Ensemble Document Retrieval in a Multilingual Corpus

Team MAM : Aryan Ahadinia and Matin Ansaripour and Madeleine Hueber
{aryan.ahadinia, matin.ansaripour, madeleine.hueber}@epfl.ch

Abstract

In this study, we present an information re-
trieval system capable of efficiently retrieving
from a large multilingual corpus. We leverage
a hybrid approach for combining the strengths
of both TF-IDF and BM25 models into a single
ensemble model. Furthermore, we prove the ef-
ficiency of our method using empirical results.
Our code is mainly based on GitHub and our
pre-computed tokens and models are available
on Kaggle which are used for our Submission
Notebook on Kaggle. (details in app. A).

1 Introduction

With the rapid growth of online content, there is a grow-
ing need for effective information retrieval (IR) systems.
In this report, we present a high-recall multilingual re-
trieval system within a corpus of French (FR), English
(EN), German (DE), Spanish (ES), Italian (IT), Arabic
(AR), and Korean (KO) documents. We first explored an
initial approach using TF-IDF and BM25. Then, we de-
veloped a hybrid approach for combining the strengths
of both models. We also implemented some other meth-
ods such as Dense Passage Retrieval and discussed their
unsatisfactory performances in our problem. Finally,
we evaluated the performance of our model in terms of
recall@k and compared it to the baseline methods.

2 Proposed Method
2.1 Data Preparation

The first step in deploying any retrieval system is fok-
enization. Our process begins with text cleaning to re-
move non-textual data such as URLS, tables, and images,
using regular expressions. Then, we remove stopwords
for each language using spaCy (Honnibal et al., 2020),
except for Arabic, where we implemented our cleaner
based on the NLTK (Bird and Loper, 2004). Finally,
we apply lemmatization to reduce tokens to their root
forms, using spaCy’s pre-trained models (and CAMeL
Tools (Obeid et al., 2020) for Arabic). This step re-
duces vocabulary size and improves query-documents
terms matching, which will lead to an increase in recall.
Due to the time-consuming nature of the tokenization
pipeline, especially the lemmatization step, our imple-
mentation is tailored for distributed computation. This

tokenization step ensures that data fed into the IR mod-
els is relevant and semantically rich.

2.2 TF-IDF

We used our modification of TF-IDF (Sparck Jones,
1988) as a part of our IR system. For a documents corpus
D and a vocabulary set V, the term frequency vector
and inverse document frequency are being calculated
using (1) and the TF-IDF representation is given by (2)
in which n,_q is the frequency of term ¢ in document d
and n; is the number of documents containing term .

TF(d) = [y ey, ID(f) = In ('nD') M
[TF(d, 1) X IDF()] e

TF-IDF(d) = [|[[TF(d,t) x IDF(#)]tev||2

@

To account for document length variability, in (2) we
used a normalized version of TF vectors of both queries
and documents, TF' instead of TF. In TF' for documents,
we use a pivot based on the median of TFs’ norms for
each language (details provided in Appendix C). Dur-
ing inference, the relevance score is calculated as the
inner dot product between the TF-IDF representations
of the query and documents. To optimize computation,
we precomputed and stored the TF-IDF matrix of the
documents for each language as sparse matrices. For
each language, we then computed the query represen-
tations in sparse matrix form and used sparse matrix
multiplication for efficient inference with minimal time
and memory usage.

2.3 BM-25

To optimize inference time through pre-computation,
we decomposed the BM25 (Robertson and Zaragoza,
2009) formulation into two parts: the fitting phase as
(4) and the inference phase as (5) in which L is the aver-
age document length in the corpus and s(g, d) denotes
the relevance score of document d to query g. Other
notations are same as TF-IDF.

+ 1) 3)

IDF(t) - 0y q - (k1 + 1)
e+ ki - (1-b+b-‘%’)

‘D| —ng + 0.5

IDF(t) = log < 105

g(t,d;D) = 4)

https://github.com/madhueb/DIS_project1
https://www.kaggle.com/datasets/mansarip/dis1-preprocess/data
https://www.kaggle.com/code/ahadinia/team-mam-inference-notebook
https://www.kaggle.com/code/ahadinia/team-mam-inference-notebook

Table 1: Recall@ 10 on development data for the TF-IDF, BM25, and the ensemble model on different languages.

Model EN FR DE IT ES KO AR ALL
TF-IDF 46.00 80.50 55.00 60.00 79.00 53.50 51.50 60.85
BM25 78.50 90.50 69.00 78.00 95.00 57.50 80.00 78.35
Ensemble 79.00 91.00 69.00 78.00 95.50 58.50 80.50 78.78

recall@k
recall@k

— EN — ES —— DE
FR — T —— AR

FR

— EN —— ES —— DE

— T

recall@k

— EN — ES —— DE

—— AR FR — T —— AR

o 1 2 3 4 5 6 7 8 9

k

(a) TF-IDF

(b) BM25

(c) Ensemble

Figure 1: Recall@QF vs k (number of retrieved documents) of different models.

s(q,d;D) =Y g(t,d; D)

teq

&)

The values of G = [¢(t,d; D)]aep, ey are mostly
zeros since the term frequencies are mostly zeros, there-
fore we can pre-compute and save G in a sparse ma-
trix for each language separately. The inference can
be done for all documents by adding up the columns
of G. So, matrix G is saved as SciPy (Virtanen et al.,
2020) Compressed Sparse Column matrix for efficient
columns summation. As (4) shows, BM25 has two
hyper-parameters k; and b which we tune on the devel-
opment dataset for each language, as outlined in 3.1.
The IDF is calculated as in (3) for BM25. Although
dozens of BM25 extensions have been proposed for bet-
ter performance such as BM25+ (Lv and Zhai, 2011a)
or BM25L (Lv and Zhai, 2011b), we prefer the original
version because it can be implemented with sparse ma-
trices and requires the least amount of computations in
the inference time.

2.4 Ensemble Model

As illustrated in figure 1, most of the hits of both TF-IDF
and BM25 models are on their first predictions based on
their scores, therefore, combining their initial guesses
can improve performance. In this regard, we include
predictions of both of these algorithms in the final top-k
prediction in our ensemble model. The portion of contri-
bution of each model in the final prediction is tuned on
the development dataset for each language separately.
Note that we prioritize the predictions of BM25 over
TF-IDF with similar rankings in case of duplication in
the first predictions as discussed in appendix D.

2.5 Dense Passage Retrieval (DPR)

We explored the use of a DPR model (Karpukhin
et al., 2020), which can be beneficial for our re-
trieval system for aligning distributions of queries

and the corpus. In this regard, we employed
microsoft/mdeberta-v3-base, a multilingual BERT
model. However, during testing, this approach yielded
unsatisfactory results, so we decided to set it aside (de-
tails in appendix E).

3 Results
3.1 Hyper-parameter Tuning

The hyper-parameters tuning of our model is done in
two stages. Firstly, we tune the hyper-parameters of
the BM25 model, k1 and b, and secondly, we tune the
portion of contribution of each model in the final hybrid
prediction, both using grid search. Details are available
in appendix F. For some languages, the best portion of
the contribution of BM25 is 1.00 which indicate that
taking TF-IDF predictions into account will not increase
the performance.

3.2 Performance Comparison

The performance of TF-IDF, BM25, and the ensem-
ble models are illustrated in table 1. Although BM25
performs significantly better than TF-IDF, taking TF-
IDF predictions into account improves the performance
of the system up to 1% for some languages and up to
0.43% in overall.

4 Discussion and Conclusion

At a glance, we showed that a well-tuned ensemble
model consisting of TF-IDF and BM25 retrieval model
can outperform on this dataset. However, despite these
positive outcomes, there are notable areas for improve-
ment. One significant idea would be to introduce a more
robust supervised learning component, drawing inspi-
ration from the DPR model. Although our initial DPR
trials yielded limited results, refining this approach to
better fit our data could provide a deeper understanding
of document relevance.

References

Steven Bird and Edward Loper. 2004. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214-217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Yuanhua Lv and ChengXiang Zhai. 2011a. Lower-
bounding term frequency normalization. In Proceed-
ings of the 20th ACM International Conference on
Information and Knowledge Management, CIKM ’11,
page 7-16, New York, NY, USA. Association for
Computing Machinery.

Yuanhua Lv and ChengXiang Zhai. 2011b. When doc-
uments are very long, bm25 fails! In Proceedings
of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’11, page 1103-1104, New York, NY, USA.
Association for Computing Machinery.

Ossama Obeid, Nasser Zalmout, Salam Khalifa, Dima
Taji, Mai Oudah, Bashar Alhafni, Go Inoue, Fadhl
Eryani, Alexander Erdmann, and Nizar Habash. 2020.
CAMeL tools: An open source python toolkit for
Arabic natural language processing. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 7022-7032, Marseille, France. Eu-
ropean Language Resources Association.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr., 3(4):333-389.

Karen Sparck Jones. 1988. A statistical interpretation of
term specificity and its application in retrieval, page

132-142. Taylor Graham Publishing, GBR.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Niko-
lay Mayorov, Andrew R. JONES, Nathaniel Smith,
Robert Kern, Eric Larson, CJ Carey, flhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis
Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antoinne Bell, Silvester S. Diederichs,
Jaime Nunez-Iglesias, Fabian Pedregosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy
1.0: Fundamental algorithms for scientific computing
in python. Nature Methods, 17:261-272.

A Statement on Deliverables

Our code is mainly based on GitHub and our trained
models are available on Kaggle. The final inference
notebook on Kaggle and our repository on GitHub will
be publicly available on Nov 9, 2024. On the inference
notebook, we have loaded our source code from GitHub
as a library. Note that the GitHub development token
on the inference notebook can be ignored after Nov 9,
2024, as it is for loading our repository, which was (is)
private before the deadline.

B More Detail on the Tokenization

We also employed compound word decomposition using
the pyphen library for agglutinative languages, however,
it resulted in a decrease in the overall performance, so
this stage has been discarded in the final model.

C TF-IDF Implementation Details

To improve the robustness of term frequency across
documents of varying lengths, we apply a normalization
to the vector TF(d). The normalized term frequency
vector for a document TF'(d) is defined as (6)

TF(d)
TF (d) =
(@) = 55 medp,. + 0.5 [TF@)]

(6)

where lan is the language of the document d and
medp,, represents the median ¢3-norm across all docu-
ments in the corpus of the language [an. In other words,
Dyop : medp,q, = median(||TF(d)||2) for d € Djgp.
The normalized TF’(q) vector for a query is defined as
).
TF(q)

9 = gl ™

The resulting TF-IDF vector for a document d is then
given by 8.
[TF'(d, w) x IDF(w)]wey

TF-IDF(d) = H[TF’(CL w) X IDF(w)]wev||2 ®

This TF-IDF representation 8 provides a more bal-
anced weighting of terms, especially across documents
of different lengths.

D Ensemble Model Details

Needless to say, we ignore the duplicate results of BM25
and TF-IDF while combining their result for ensemble
model. If the first predictions of the TF-IDF model
are exactly the same to the BM25 so that we reach
prediction with lower ranks than the ones we included
from BM25, we switch back to BM25 as it performs
marginally better as illustrated in details in 1.

E DPR

We explored the use of a DPR model (Karpukhin et al.,
2020), which can be beneficial for our retrieval sys-
tem for aligning distributions of queries and the cor-
pus. We employed microsoft/mdeberta-v3-base, a

https://aclanthology.org/P04-3031
https://aclanthology.org/P04-3031
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2063576.2063584
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://aclanthology.org/2020.lrec-1.868
https://aclanthology.org/2020.lrec-1.868
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/madhueb/DIS_project1
https://www.kaggle.com/datasets/mansarip/dis1-preprocess/data

Algorithm 1 Combining the Models Predictions

Require: ppjro5 as ordered predictions of BM25.
Require: prr_;pr as ordered predictions of TF-IDF.
Require: % the number of final predictions.
Require: 7 the portion of contribution share.
P < pem2s[0 : 1.k
140
while |p| < k do
if i < 7.k then
if prr_rprli] ¢ p then
P p+prr_1prli]
end if
else
P < p+ ppumasli]
end if
i1+ 1
end while
return p

multilingual BERT model. We embedded the docu-
ments and fine-tuned the embeddings using DPR loss as
(9), where d™ is the relevant document to the query ¢ ,
{d{,...,d;, } are the irrelevant ones and sim is the sim-
ilarity function in the embedding space. To fit the data
within the BERT model context size, we split the doc-
uments into overlapping chunks aligned with their sen-
tences. However, during testing, this approach yielded
unsatisfactory results, so we decided to set it aside and
concentrate our efforts on our ensemble retrieval model.
Note that this method requires more computation com-

pared to our method and it requires a lot of computa-
tional resources to tune.
esim(qi,dJr)

L=—1o 9
& esim(qi,dt) ZZ:l esim(qi,dy) ©)

F Hyper-parameter Tuning

In the first stage of hyper-parameter tun-
ing, we tune the BM25 parameter for each
language separately in the search space of
{1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.9,1.9,2.0} and
{.00, .25, .50, .65, .70, .75, .80, .85, .90, .95, 1.00} for
k1 and b, respectively.

In the second stage, we employ a full grid search for
finding the best portion of contribution of each models
to the ensemble model. The results are demonstrated in
table 2.

Table 2: Best portion of contribution of BM25 model in
the ensemble model.

Language BM25 Contribution
EN 0.80
FR 0.90
DE 1.00
IT 1.00
ES 0.80
KO 0.80
AR 0.90

