Project 2: Recommender Systems

Team MAM : Aryan Ahadinia and Matin Ansaripour and Madeleine Hueber
{aryan.ahadinia, matin.ansaripour, madeleine.hueber}@epfl.ch

Introduction

The rapid growth of online markets has increased
the need for accurate recommendation systems to
enhance user navigation and enable targeted adver-
tising. The objective of this project is to develop a
fast and accurate book recommender system that
predicts user ratings. To achieve this, we first en-
riched the provided dataset with the books’ infor-
mation and descriptions using various book APIs
(sec. 1). Next, we explored multiple methodolo-
gies (sec. 2), including classical and neural matrix
factorization, as well as content-based approaches,
to improve recommendations. These methods were
then evaluated and compared to baseline models,
with the results presented in sec. 3. Finally, our
findings are discussed and concluded in sec. 4. Our
full notebook is available on Kaggle.

1 Data Enrichment

We enrich the books’ metadata by including the ti-
tle, author, and description. Titles and descriptions
can provide rich information about a book’s content
which can be extracted by using well-established
retrieval and embedding techniques. Author infor-
mation is included, since it is presumed that authors
preserve the same tense in their artifacts, making
them likely to receive similar ratings.

To collect the book metadata, we implemented a
multi-step process to ensure maximal coverage. In
these three steps, we have employed Open Library
(Open Library, n.d.), Google Books (Google, n.d.),
and ISBNdb (ISBNdb, n.d.), respectively, due to
their restrictions, prices, and missing values (details
in app. A). Once collected, the metadata undergoes
a cleaning process to remove hyperlinks, blank
lines, and other extraneous elements, followed by
translation into English for consistency.

The metadata is embedded into a numerical
space using two distinct approaches. In the first
approach, descriptions are embedded using the

BM-25 method, which focuses on collaborative
filtering-based methods. In the second approach,
used for neural methods, the descriptions are em-
bedded in a latent feature space using pre-trained
microsoft/deberta-v3-base (He et al., 2023)
model from hugging face (Wolf et al., 2020).

2 Methodologies
2.1 Matrix Factorization (MF)

Matrix factorization is a powerful technique for
collaborative filtering in recommendation systems,
particularly effective in handling the sparsity of
user-item interactions. In our case, the user-book
rating matrix R is extremely sparse, as ratings are
available only for a small subset of user-book pairs.
This method approximates R as the product of two
lower-dimensional matrices, P (user embeddings)
and @ (book embeddings), which represent users
and books in a shared latent space. The matrices P
and (@) are optimized using gradient descent (details
in app. B).

2.2 Neural Matrix Factorization (NeuMF)

NeuMF is a method proposed by (He et al., 2017)
to capture non-linear and complex relationships in
user-item interactions based on Generalized Ma-
trix Factorization and a Multilayer Perceptron. Ad-
ditionally, metadata can be incorporated into the
NeuMF model by concatenating external BERT
embeddings with the model’s internal item repre-
sentation. Due to the data sparsity, it is necessary
to employ regularization techniques to maintain the
model’s generalization. The hyper-parameters of
this model are tuned using the grid-search strategy
with Ray library (Moritz et al., 2018) for parallel
executions (details in app. D).

2.3 Leveraging Book Metadata with BM25

To enhance the model’s performance, we develop
a hybrid ensemble-like approach that leverages the
previously collected book metadata and their BM25

https://www.kaggle.com/code/ahadinia/teammam-project-2

embeddings to find similar books and aggregate
their ratings. The underlying intuition is that rat-
ings given by a user to similar items are likely to
be similar, so, incorporating ratings from similar
books would yield more reliable predictions. Simi-
lar books are retrieved using a BM25 retrieval sys-
tem using the title and description of a book. For
a given book b, the top k similar books based on
their BM25 scores are retrieved. Additionally, we
consider augmenting this set with books written by
the same author(s) as b, forming a comprehensive
set of related books denoted by B. The predicted
rating Iy, ,, of user u for book b is then computed
using a weighted averaging as in equation 1.

R ZbieB b, - Score(b, b;)
bu = ZbeB score(b, b;)

In equation 1 7y, ,, represents the rating of book
b; by user u, obtained from the training data if avail-
able, or approximated using matrix factorization
(R = PQ). The term score(b, b;) corresponds to
the similarity score assigned by the BM25 model
for the pair of books b and b;. Note that the BM25
model always returns b as the top similar book, so
the final predicted rating R ,, will always incorpo-
rate the rating from the factorization model.

Moreover, in another approach, after approxi-
mating all the ratings with MF, we aggregate each
user’s ratings with those of the 300 most similar
users, applying a method analogous to the averag-
ing procedure as eq. 1 used for the books’ ratings.

)

3 Experiments

3.1 Data Split and Baselines

Since the provided data did not include a validation
set, we created an artificial train-validation split
from the training data to evaluate and compare our
models. You can find the details in the app. C.

In the first stage the basic models such as SVD
(Koren et al., 2009), NMF (Hu et al., 2008), and
variants of KNN (Sarwar et al., 2001), are trained,
and evaluated on the dataset to have a baseline for
comparison using Surprise library. All of these
methods’ hyper-parameters are tuned using the
grid-search strategy for lower root mean square
deviation (RMSE) using k-fold cross-validation.

3.2 Evaluation

We performed extensive hyperparameter tuning for
optimizing P and () in Matrix Factorization (MF)

Table 1: Performance of baseline models in comparison
to our models.

Model RMSE
SVD 0.890
NMF 0.978
KNN 1.076
KNN (means) 1.021
KNN (z-scores) 1.017
KNN (baseline) 0.939
MF 0.813
MF with BM25 0.787
MF with BM25, Users 0.781
MF with BM25, Authors 0.788
MF with BM25, Authors, Users 0.782
NeuMF 0.856
NeuMF with Embeddings 0.850

and NeuMF. Detailed information about this pro-
cess can be found in the Appendix.

Table 1 presents the RMSE results of the various
methods explored in our experiments. For MF, we
considered the following settings and their com-
binations: the baseline MF model, MF enhanced
with BM25-based content integration, MF integrat-
ing content from books by the same authors, and
MF incorporating similar users’ ratings. When in-
tegrating content features (from books or authors),
we subsequently incorporated ratings from simi-
lar users. For additional implementation details,
please refer to the associated Kaggle notebook.

3.3 Results

As we can see, MF and its variants outperformed
the other methods. Although the MF model aug-
mented solely with BM25 did not surpass all other
integrated approaches, its results remained com-
parable or even superior to most alternatives. We
interpret this to mean that when optimizing the
user and item latent matrices, MF allows the flow
of information across books and users, and incor-
porating external content similarity (as provided by
BM25) can further enhance this process.

4 Conclusion and Discussion

This study explored developing a book recommen-
dation system for predicting user ratings employing
the metadata gathered for the books. Across all the
models developed for this project, this report il-
lustrates that a hybrid approach based on matrix
factorization and content-based collaborative filter-
ing outperforms the others based on experimental
results.

References

Google. n.d. Google books api. Accessed: 2024-12-01.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
DeBERTav3: Improving deBERTa using ELECTRA-
style pre-training with gradient-disentangled embed-
ding sharing. In The Eleventh International Confer-
ence on Learning Representations.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie,
Xia Hu, and Tat-Seng Chua. 2017. Neural collabo-
rative filtering. In Proceedings of the 26th Interna-
tional Conference on World Wide Web, WWW 17,
page 173-182, Republic and Canton of Geneva, CHE.
International World Wide Web Conferences Steering
Committee.

Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008.
Collaborative non-negative matrix factorization for
recommender systems. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD ’08), pages
426-434. ACM.

ISBNdb. n.d. Isbn db api documentation. Accessed:
2024-12-01.

Yehuda Koren, Robert Bell, and Chris Volinsky. 2009.
Matrix factorization techniques for recommender sys-
tems. Computer, 42(8):30-37.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I
Jordan, and Ion Stoica. 2018. Ray: a distributed
framework for emerging ai applications. In Proceed-
ings of the 13th USENIX Conference on Operating
Systems Design and Implementation, OSDI’ 18, page
561-577, USA. USENIX Association.

Open Library. n.d. Open library api. Accessed: 2024-
12-01.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web
(WWW 2001), pages 285-295. ACM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

A Data Collection

In the first stage, Open Library API has been lever-
aged since it is freely available without a quota.
In the second stage, the missing values have been
filled with Google Books API, which is also free
but applies a restriction on the number of queries
per day. In the last stage, ISBNdb, which requires
payment to access has been leveraged to fill the
remaining missing values.

B Matrix Factorization

We aim at approximating the user-book rating ma-
trix R, which is a sparse matrix of size |U||B|,
where |U] is the number of users and |B| is the
number of books. To approximate 2, we represent
it as the product of two low-dimension matrices, P
and @, which encode users and books in a shared
latent space of dimension d:

R~ PQT, with P € RV ¢ ¢ RIIxd

Our goal is to learn the matrices PP and () by min-
imizing the reconstruction error, which is defined
as:

d

e = (rij — > pixtjn)? + AplIPI* + Aql1Q]?
k=1

where Ap and A\ are regularization parameters.
To minimize this error, we apply gradient descent,
iteratively updating the elements of P and () as
follows:

Pik < Pik + 20(€ijqk — Appik)
Ak — qjk + 20(€ipik — AQ4ik)

where « is the learning rate, and e;; is the pre-
diction error for a given user-item pair. These up-
dates are applied only for (4, j) pairs where a rating
r;; exists, ensuring that the model learns from the
available data while efficiently handling the spar-
sity of R. To be mentioned, we clip the values of
2a(eijqjk — Appix) and 2a(eijpir — Aqjk) to be
between -1000 and 1000 in order to avoid numeri-
cal issues.

C Train and Validation Data Split

To avoid cold-start issues, we selected user-book
pairs where users had rated at least 5 books and
books had at least 5 ratings. Each pair was added
to the validation set only if both the user and book

https://developers.google.com/books
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/3038912.3052569
https://doi.org/10.1145/1401890.1401983
https://doi.org/10.1145/1401890.1401983
https://isbndb.com/apidocs
https://openlibrary.org/developers/api
https://doi.org/10.1145/371920.372071
https://doi.org/10.1145/371920.372071
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

—e— Validation
1.1 Train

RMSE
o
©

0 5 10 15 20 25 30
Step

(a) RMSE

—e— Validation
Train
0.8

I |

0.6

MAE

0.5

0 5 10 15 20 25 30
Step

(b) MAE

Figure 1: Measurements vs. optimization steps during training the matrix factorization model.

were not already included. Using this method, the
original dataset with 100523 ratings was split into
a training set with 96704 ratings and a validation
set with 3819 ratings.

D NeuMF Hyper-parameter Tuning

The hyper-parameter tuning of NeuMF has been
done for its intermediate representation dimen-
sion on the set of {4,8,16}, the architec-
ture of its multilayer perceptron on the set of
{[8,4],[16,4],[16,8],[32,16,4],[32,16,8]}, the
dropout rate on set of {0.1,0.15,0.20,0.25}, the
value of learning rate on set of {le —2,5e¢—3, le—
3}, the value on weight decay {e=3,e™%, e~°} and
the batch size on set of {512,1024,2048,4096}
using grid-search strategy with ray library. The
chosen values are in tab. 2.

Hyper-parameter Plain With BERT
Repr. Dimention 4 4
Architecture 4—8 4—38
Dropout 0.1 0.1
Learning Rate 0.001 0.01
Weight Decay 0.001 0.001
Batch Size 2048 512

Table 2: Selected hyper-parameter values for the final
configuration of MF method.

E MF Hyper-parameter Tuning

We used Weights & Biases (W&B) Sweep to fine-
tune the model. The sweep was configured to run
for 512 random trials, each aiming to minimize
the evaluation loss. The primary hyper-parameters
tuned were the learning rate (Ir) with the search
space of [0.00001,0.1], the regularization terms

(Ap, Ag) with the search space of [0,1], and the
factorization dimension (d) searching between the
set of {1,2,8,32,128,512}. Each run executed a
fixed number of iterations to systematically explore
the hyper-parameter space. By utilizing random
search, we ensured coverage across a broad range
of values, ultimately identifying configurations that
improved the model’s performance.

We also performed a grid search for the BM25
parameter k from 1 to 100. Due to the large search
space, the number of similar users considered (300)
and other hyper-parameters were chosen empiri-
cally. The final hyper-parameters are provided in
Table 3.

Hyper-parameter Chosen Value

Ir 0.004
Ap 0.494
AQ 0.132
d 8
kpm2s 20
of Optimization Steps 20

Table 3: Selected hyper-parameter values for the final
configuration of MF method.

F Experiments Plots

Fig. 1 illustrates the trend of measurements, mean
absolute error (MAE), and RMSE, over the training
steps of MF.

