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Abstract—Recent developments in Multiple Instance Learn-
ing (MIL) have enabled significant progress in medical image
analysis, especially in the analysis of Whole Slide Images
(WSIs). This study focuses on benchmarking the performance
of seven MIL based models, which are ABMIL, ACMIL,
AttriMIL, CLAM, DSMIL, TransMIL and VarMIL, on WSIs
of tissue cell images across multiple datasets (TCGA, classical
MIL benchmarks and Claymeton 16). These tests highlight the
importance of attention mechanisms and spatial awareness in
performance enhancement for complex tasks, while no model
outperforms others in all tasks. The findings in this paper give
valuable insights for MIL model selection and improvement
for histopathological analysis.

I. INTRODUCTION

Improvements in machine learning, especially Multiple
Instance Learning (MIL) frameworks have a huge impact on
revolutionizing medical image analysis. Whole Slide Images
(WSIs) of tissue samples provide detailed and wealthy in-
formation, but pose unique challenges due to their gigapixel
resolution size and complexity.

Various MIL methods have been used, including attention-
based approaches such as ABMIL [I] and ACMIL
[2], attribute-driven models such as AttriMIL [3], and
transformer-based frameworks such as TransMIL [4]. Also,
DSMIL [5] and CLAM [6] are spatially aware techniques
which improve feature aggregation for WSIs, while VarMIL
[7] incorporates variance modules.

In this study, we benchmark these seven MIL models
on tissue sample WSIs across various datasets. These MIL
models use attention mechanisms, spatial awareness, and
attribute-based scoring for improving bag-level predictions.
The goal of this project is to evaluate the performance of
each model on various datasets with different sizes and com-
plexities, to give insights on selecting within MIL models
and contributing to the improvement in histopathological
analysis.

II. MULTIPLE INSTANCE LARNING MODELS

Multiple Instance Learning is a weakly supervised learn-
ing technique, where each bag is assigned with a single
label rather than individual instances. In this setup each bag
B = {x1,..,x,} consists of a collection of instances x;and
the objective is to predict a label yz for the entire bag, rather
than for individual instances. This framework is particularly
suitable for tasks like whole slide image (WSI) analysis in
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medical imaging, where each slide is treated as a bag and
smaller tiles extracted from the slide are treated as instances.
The goal of the model is to predict bag-level labels, as well
as to identify the contribution (importance) of each instance
to the prediction [8].

How MIL Works: The steps of MIL frameworks typically
involve the following:

1) Instance Encoding: Each instance z; is converted into
an embedding z; = f(x;) where f is a pre-trained or
trainable feature extractors.

2) Aggregation: The instance embeddings are combined
into a single bag-level representation using differ-
ent aggregation function proposed by the MIL mod-
els. Two common baselines are Embedding-mean or
Embedding-max :

n
1
Zp=— E z; or Zp = max (z;)
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=

3) Classification: Aggregated representation is finally
passed to a classifier h where the bag label is pre-
dicted. yg = h(Zg)

This approach allows the model to leverage weak super-
vision effectively, identifying key instances that contribute
most to the overall prediction. In the following, we briefly in-
troduce the different MIL models studied and benchmarked.

A. ABMIL

ABMIL [1] introduces a method for aggregating bag
instances through a learned attention mechanism. Unlike
fixed pooling strategies such as max pooling or averag-
ing, ABMIL dynamically computes a weighted average
of instance embeddings, with the weights learned by an
attention network. This allows the model to prioritize the
most relevant instances for predicting the bag label.

The paper also proposes Gated Attention, which en-
hances flexibility by incorporating a gating mechanism into
the standard attention. This addresses the limitations of
simple activations like tanh and enables the model to better
capture complex relationships within the data.

B. CLAM

CLAM [6] extends ABMIL for multi-class classification
by employing an attention-based learning approach to auto-
matically identify sub-regions with high diagnostic value.



It also incorporates instance-level clustering, focusing on
the most representative regions identified by attention to
constrain and refine the feature space. This ensures that
only the most informative regions contribute to the bag-level
prediction, reducing noise and enhancing the model’s ability
to distinguish between different classes.

C. VarMIL

VarMIL [7] builds upon the ABMIL framework by intro-
ducing a variance-based attention mechanism alongside the
classical attention mechanism. VarMIL emphasizes instances
that exhibit high variance in their feature representations.
These high-variance instances are considered more infor-
mative and are leveraged to guide the learning process. By
focusing on such instances, VarMIL reduces the impact of
less reliable or redundant data, enhancing the model’s ability
to capture critical patterns. This approach improves both the
interpretability and performance of MIL models, particularly
in tasks involving complex or noisy data distributions.

D. ACMIL

ACMIL [2] uses two key mechanisms for the issue
of overfitting in MIL methods: Multiple Branch Attention
(MBA) and Stochastic Top-K Instance Masking (STKIM).
MBA captures diverse patterns inside data, by using mul-
tiple attention branches. This way, the model ensures that
instances which are more discriminative contribute more to
the final prediction. On the other hand, STKIM diminished
the reliance on a small subset of high-attention instances.
It randomly masks the top-K instances and distributes their
attention to remaining instances. ACMIL can reduce the con-
centration of attention value and attain robust performance.

E. AttriMIL

AttriMIL [3] enhances upon traditional attention-based
MIL methods like ABMIL with introducing an attribute
scoring mechanism, to integrate instance-level attention
with bag-level predictions. Different than standard attention
mechanisms, AttriMIL focuses on spatial relations between
both instances and their specific attributes. It uses a spatial
attribute constraint for spatial correlations between neighbor-
ing instances within a WSI, to cluster similar cells together.
It also uses attribute ranking constraint for high- lighting
attribute differences between positive and negative instances.
These let AttriMIL prioritize relevant regions and maintain
high interpretability at the same time, even in complex WSI
data.

F. DSMIL

DSMIL [5] introduces a dual-stream MIL architecture
with a max-pooling branch to identify critical instances
and an attention-based branch to compute bag embeddings.
This approach ensures permutation invariance and robust
aggregation. DSMIL leverages self-supervised contrastive

learning (SimCLR) for instance-level feature extraction and
employs multiscale attention via pyramidal concatenation to
combine features across magnifications in WSIs, handling
varying bag sizes effectively.

G. TransMIL

TransMIL [4] applies the Transformer framework to
MIL problems, leveraging its self-attention mechanism to
model interactions among instances while integrating spatial
information using positional encoding. It maps bag-level
inputs X to labels Y through a Transformer space T, utilizing
a TPT module with two Transformer layers and a Pyramid
Position Encoding Generator (PPEG) for feature aggregation
and spatial encoding. The TPT module processes instance
embeddings through multi-head self-attention (MSA), con-
ditional positional encoding, and a multilayer perceptron
(MLP) for classification. To handle long instance sequences,
the module uses the Nystrom method, approximating self-
attention to reduce computational complexity from O(n2) to
O(n). The PPEG module employs multi-scale convolution
kernels for positional encoding, enhancing adaptability and
integrating global and local context information.

III. METHODS
A. Dataset

In order to evaluate the models performance across vary-
ing tasks and complexities we tested them on three distinct
datasets.

1) TCGA dataset: The first dataset is derived from The
Cancer Genome Atlas (TCGA), a publicly available resource
containing cancer data such as whole slide images, genomic
profiles, and clinical information across various cancer types.
We used TCGA embeddings generated through the UNI
model for cancer detection.

2) MIL benchmark datasets: We tested the models on
classical MIL benchmark datasets consisting of pre-extracted
feature vectors. These include MUSK1 and MUSK?2, used
to predict drug effects based on molecule conformations,
where a bag is labeled positive if at least one conformation is
effective. The other three datasets—ELEPHANT, FOX, and
TIGER—contain image characteristics, with bags labeled
positive if at least one segment includes the target animal.

3) Clameytonl6: We also evaluated our models on the
Cameylon 16 (C16) dataset, which focuses on lymph node
images for cancer detection. Its high complexity and large
number of instances (over 4000 per bag) made evaluation
challenging due to computational resource limitations. Hy-
perparameter tuning was not feasible, but the results still
highlight how models perform under demanding conditions.

B. Experimental Setup

After fine-tuning each model, the optimal parameters and
descriptions are stored in a JSON file. This file includes
the model name, a brief description of its architecture, and



Table T
PERFORMANCE OF DIFFERENT MIL MODELS

Model F1 Score Accuracy Precision Recall Error

Emb +mean (baseline) 0.89+0.02 0.90£0.02 0.92+0.03 0.87+0.05 0.095=+0.03
Emb +max (baseline) 0.97+0.03 096=£0.04 094+0.05 0.98=£0.02 0.04=+0.03
ABMIL (Attention) 0.98+0.01 098+0.01 0.97+0.01 0.99+0.01 0.024+0.01
ABMIL (GatedAttention) 0.98+0.02 0.98+0.02 0.97+0.03 0.98+0.01 0.0240.02
AttriMIL 0.94+0.02 095£0.02 0.98+0.01 0.91£0.03 0.05=%0.02
ACMIL 0.94+0.02 095£0.02 0.99+0.01 0.92+0.03 0.04+0.02
CLAM 0.96 +£0.02 0.97+£0.02 0.97+0.02 0.96£0.02 0.03+0.02
DSMIL 0.87+0.04 0.87£0.04 0.89+0.06 0.88=£0.07 0.14£0.03
VarMIL 0.97+0.02 097£0.01 0.98+0.01 0.96+0.04 0.04+0.01
TransMIL 0.93+0.04 094£0.02 0.94+0.03 0.93£0.04 0.06=+0.02

the best hyperparameters obtained through the fine-tuning
process. We benchmark the method using 5-fold cross-
validation. The training and validation sets are loaded using
PyTorch Dataloader with a batch size of 1. A model is
instantiated and trained for 20 epochs on the training set
using a specified learning rate and weight decay. After
training, the model is evaluated on the validation set, and
metrics such as test error, F1 score, accuracy, precision, and
recall are computed. Results from all folds are aggregated to
calculate the mean and standard error for each metric. This
setup ensures robust performance evaluation across varying
splits of the data.

IV. RESULTS

We evaluated all models across three datasets: TCGA,
classical MIL benchmarks, and Clameytonl6 (C16). The
quantitative results are summarized in Tables [, [, and
while the corresponding ROC curves are presented in

Figures [1] and
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Figure 1. ROC Curves for MIL Models on TCGA Dataset

1) Performance on the TCGA dataset: Simpler methods
achieved strong results, highlighting their suitability for
tasks with smaller bags. However, more advanced methods
demonstrated slightly superior performance overall, suggest-
ing their capacity to better capture complex patterns in the
data.

2) MIL benchmark datasets:

For the classical MIL

benchmarks, all models except TransMIL were evaluated.
TransMIL was excluded due to its high computational re-
quirements and relatively lower performance observed on
the TCGA dataset. The results, shown in Table indicate
substantial variability depending on the dataset. Specifically,
FOX and MUSK?2 datasets yielded the lowest overall scores,
consistent with their higher complexity. Notably, CLAM,
AttriMIL, and GatedAttention consistently performed well
across the benchmark datasets, aligning with our prior
findings.

3) Clameytonl6 dataset: The C16 dataset presents
unique challenges due to its larger bag sizes (over 4,000
instances). Hyperparameters were tuned on TCGA and
not optimized for C16 due to computational constraints.
However, methods such as CLAM and VarMIL performed
slightly better (Table [[II), probably due to their robustness
to noise in large bags of high dimensions.

General Observations

« No single model consistently outperforms others across
all tasks.

e Certain models, such as GatedAttention, AttriMIL,
CLAM, and VarMIL, perform particularly well on
simpler datasets, while others, like DSMIL, show com-
paratively weaker performance.

« Model performance seems to be highly dependent on
the characteristics of the dataset and the specific task
at hand.

o For larger and more complex datasets, such as C16,
the limitations of simpler models become apparent, as
they struggle to handle the increased data volume and
complexity effectively.

V. DISCUSSION

We benchmarked seven MIL models for binary classifi-
cation tasks on WSIs. Many other MIL models could also
be beneficial for these tasks, such as graph-based models.
However, their demand on larger datasets were limitations
of this project and out of our scope.



ROC Curves for Different Models and Datasets
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ROC Curves for MIL Models on Benchmark Datasets

Table 11
PERFORMANCE OF DIFFERENT MIL MODELS ON BENCHMARK DATASETS

Model Tiger Elephant Fox Musk 1 Musk 2

Emb +mean (baseline) 0.86 +£0.012  0.90 £ 0.02 0.69 + 0.05 0.87£0.03 0.71 £ 0.08
Emb +max (baseline) 0.79+0.04 0.92+0.02 0.68+0.02 0.81 £0.03 0.66 + 0.03
ABMIL (Attention) 0.86 + 0.03 0.90 £ 0.03 0.71 +0.03 0.91+0.05 0.86+0.05
ABMIL (GatedAttention) 0.89£0.03 0.89+0.02 0.78 £ 0.05 0.84 £0.03 0.78 £0.08
AttriMIL 0.88 +0.01 0.89+0.03 0.80£0.03 0.97+0.02 0.86+0.04
ACMIL 0.88 +0.01 0.84 +0.02 0.724+0.04 0.88 +0.02 0.76 £0.11
CLAM 0.88 +0.02 0.87 £ 0.02 0.72 £ 0.05 0.92+£0.03 0.79 £ 0.06
DSMIL 0.78 +0.02 0.81 £ 0.02 0.71 +£0.02 0.79 £ 0.08 0.65+0.11

Table III
PERFORMANCE OF DIFFERENT MIL MODELS ON C16

Model F1 -Score
Emb +mean (baseline) 0.26 £0.011
Emb +max (baseline) 0.47+0.2
ABMIL (Attention) 0.47+0.2
ABMIL (GatedAttention) 0.45 £ 0.2
AttriMIL 0.45+0.2
ACMIL 0.544+0.2
CLAM 0.46 £0.19
DSMIL 0.41+£0.2
VarMIL 0.52 +0.2146

Our results indicate that CLAM, GatedAttention, and
ACMIL perform well across two of the datasets. These
models share common characteristics, such as the use of
attention mechanisms and constraints to refine feature se-
lection, which contribute to their robustness. Additionally,
models like VarMIL, which incorporate noise reduction
strategies, appear to enhance performance on more complex
datasets. By combining these types of features, there may
be a potential to develop a model that is more robust and
less dependent on specific dataset characteristics.

Additionally, we focused on binary classification tasks,
which limits the scope of this project. It provided a baseline
to understand model behaviours, but left it unknown for
how models would perform in multi-class or regression
tasks. Future work should explore alternative tasks to better
understand the performance of these models.

VI. CONCLUSION

This project benchmark seven MIL models: ABMIL,
ACMIL, AttriMIL,CLAM, DSMIL, TransMIL and VarMIL,
on WSI datasets with different complexities. Key findings
of the tests suggest that no model outperforms others in
all tasks, simpler models like ABMIL and GatedAttention
are more effective for smaller and less complex datasets,
advanced models like AttriMIL and CLAM show greater
robustness in larger and complex datasets.

These results show the importance of selecting the most
suitable MIL model for the task requirements and charac-
teristics of the dataset. Future work could be to integrate
the complementary features of different MIL models and
develop a framework which can address diverse challenges
in histopathological analysis.



ETHICAL RISKS

In our project, we thought about two major ethical risks.
First one is bias in the dataset, meaning that the dataset might
be taken from a specific demographic, or from a medical
condition. Second one is reliance on machine learning for
medical diagnosis. Since incorrect predictions may cause
big consequences involving human life, it creates liability
questions such as who is responsible in a bad scenario. Even
though both are important ethical concerns of ours, we will
choose the risk of dataset bias to move on.

Risk Description

« This risk of bias in the dataset generally affects patients
and healthcare providers the most. When a specific
demographic (gender, age, ethnicity ...) is underrepre-
sented, patients may get misdiagnosed or get unequal
care. Also healthcare providers rely on the data to make
clinical decisions, so bias in the data and models may
result in incorrect decisions.

o The negative impact of this risk of bias in the dataset is
that, model may poorly generalize for the groups who
are underrepresented in the dataset. To give an example,
a model trained on TCGA dataset may focus unequally
on specific types of cancer or demographics. This may
cause lower accuracy for some populations and it can
create health disparities.

o This risk has high severity, because the data is in
medical context and biased mispredictions can put life
in danger. Also, the likelihood of this risk is significant,
since publicly available large datasets such as TCGA
may not be explicitly done considering equal represen-
tation of each demographic group.

Risk Evaluation

We reviewed the sources on the TCGA dataset for deter-
mining its representativeness, to evaluate this risk of bias in
the dataset [9]]. Even though the dataset is used broadly, it
is stated that potential biases such as predominance of some
cancer types and patient demographics being not so diverse
are present in its composition. Additionally, to identify any
disparities or dataset specific issues like biases, we evaluated
how models perform at different datasets as well.

Consideration of the Risk in Our Project
Because of the computational limitations and scope of this
project, we were not able to fully mitigate this risk.
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