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Abstract

Language models have recently shown great
promise for education, yet aligning them with
human preferences while ensuring efficiency
remains challenging. In this work, we in-
troduce a STEM-focused AI assistant com-
posed of four specialized components: a reward
model, a MCQA model, a retrieval-augmented
generation (RAG) model, and a quantized in-
ference system. Each is finetuned from the
Qwen3-0.6B-Base language model using care-
fully curated datasets and improved with ad-
vanced techniques such as curriculum learning
or QLoRA. Our experiments demonstrate that
our models achieve promising results on bench-
mark test set highlighting the model’s potential
as an assistive tool in educational settings.

Introduction

Recent breakthroughs in large language models
have made automated tutoring possible, yet turning
these systems into reliable, classroom-ready men-
tors is still far from trivial. Existing methods of-
ten overfit narrow benchmarks or require computa-
tional budgets beyond the reach of most schools. In
this project, we explored four modeling strategies
to enhance an AI assistant’s performance: reward
alignment, MCQA training, retrieval-augmented
generation, and quantized inference.

1 Approach

1.1 Reward model
The reward model was developed to assess the qual-
ity of model-generated responses, thereby our goal
was to fine-tune a language model to assign higher
rewards to outputs that are more pedagogically
valuable or accurate in STEM contexts.

We built the model in two stages. First, we fine-
tuned the Qwen3-0.6B-Base model on a curated
instruction-following dataset focused on STEM
topics to instill domain-specific capabilities. Then
we applied Direct Preference Optimization (DPO)

(Rafailov et al., 2024) to further align the model
with human preferences. To enhance performance,
we explored two complementary directions: cur-
riculum learning and alternative loss functions.

Curriculum learning
To improve the model’s ability to capture nuanced
preferences, we adopted a curriculum learning strat-
egy (Pattnaik et al., 2024).The preference dataset
was divided into three levels—easy, medium, and
hard—based on the score gap between answer pairs.
Training proceeded in stages over three epochs:
starting with easy pairs, then adding medium ones,
and finally including the full dataset.

Loss functions
To increase robustness, we explored variants of the
DPO loss: the standard DPO (Rafailov et al., 2024),
IPO (Implicit Preference Optimization) (Azar et al.,
2023), which reduces overfitting by regulating
log-likelihood gaps, and Robust-DPO (Chowdhury
et al., 2024), which explicitly models label noise.
Full details and mathematical formulations are pro-
vided in the Appendix A.1. These alternatives can
be especially useful given the inherent variability
in human preference data.

1.2 Quantized Model

We begin our quantization experiments using our
best MCQA model as a baseline, focusing on
weight quantization with LLM.int8() techniques in-
troduced by Dettmers et al. (Dettmers et al., 2022)
and implemented in the BitsAndBytes library.

BitsAndBytes implements a vector-wise quanti-
zation scheme with adaptive outlier handling, de-
signed to preserve model accuracy even under ag-
gressive compression. Our approach only make
use of the grouped quantization as, according to
Dettmers et al. (Dettmers et al., 2022), adaptive
outlier handling benefits are minimal for models
under 6.7B parameters, especially below 1B.

Additionally, we explore the effects of
parameter-efficient fine-tuning using Low-Rank
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Adapters (LoRA) (Dettmers et al., 2023). In this
setup, the original model parameters are frozen,
and a small number of trainable parameters are
added to the model. This enables task adaptation
with low additional computational overhead.

1.3 Distillation inspired RAG
To improve our MCQA model, we built a RAG
model. While not pure distillation, we decided to
distill knowledge from GPT-4o-mini and GPT-4.1-
mini for our RAG documents. We prompted the
teacher model with multiple-choice questions and
answers from four different MCQA datasets asking
for relevant information regarding the topic. For
further improvement, we fintuned an embedding
model using the same data.

2 Experiments

2.1 Data
2.1.1 MCQA, Quantization, and base RAG
The multiple choice model is fine-tuned on a simple
dataset consisting of OpenAI’s ai2-arc easy train-
ing data, preference pairs crowd-sourced from this
course (CS-552), and GSM8k training data.

ai2-arc: The ai2-arc easy training data is a mcqa
dataset that features STEM problems from the high
school and early college level. (Clark et al., 2018)

preference pairs: The preference pairs consists
of highly technical college-level STEM questions.
In the final model, the selected preference pairs
were filtered down to only mcqa questions with 4
options, where the question length is less than 30
characters. The character limit was put in place to
simulate an ’easy’ subset of the preference pairs.

gsm8k: The GSM8k data is a well-known math
benchmark. (Cobbe et al., 2021) The publicly avail-
able training data is short answer. To use it for our
MCQA task, we created a method to automatically
generate 3 wrong answers using the chat-gpt wrap-
per from M1 (preference pairs). The three wrong
answers for every existing question/answer pair
should not deviate too much from the correct an-
swer but mutually deviate enough.

Despite the instruction to not repeat the question
and directly give the answer, there was still a lot of
noise in the data which required manual cleaning.
In the end, we could use 70% of the generated
samples. The prompt we used to generate the pairs
is detailed in Appendix A.12.

other data: There were 26000 rows of data that
we trained and evaluated on, but ultimately did not

improve the performance of this model.
The final model was trained on 3000 rows. All

the data used for this project was public and widely
used STEM datasets, meaning we incurred little le-
gal risk. We acknowledge the ethical consideration
that the dataset is entirely in English and therefore
is not providing a global perspective.

2.1.2 RAG Documents
For our RAG documents, we utilized different
STEM datasets described in Table 4, The (1) SciQ
dataset is a multiple-choice question answering
(MCQA) resource consisting of questions gener-
ated by crowd workers based on textbook materials
in STEM subjects for students in grades 4 through
8, referred to as support content. This support con-
tent was pre-classified by the original authors.

We sought to replicate their methodology for
support creation on EPFL course materials, apply-
ing a Document Filter incorporating lexical, gram-
matical, pragmatic, and complexity-based crite-
ria. However, we observed that without human-
driven post-processing such as the classification
performed by crowd workers in SciQ the resulting
data quality remained insufficient.

Alternatively, we generate synthetic data based
on our four datasets to replicate the support column
from the SciQ dataset. The (2) StemQ dataset is a
university-level MCQA dataset focused on STEM
disciplines — the questions are typically multi-hop
in nature and often require specific calculations.
We also used a subset of the (3) AI2-ARC chal-
lenging dataset and a subset of (4) preference pairs
crowd-sourced from the CS-552 course.

2.1.3 Reward model
We used two datasets aligned with the model’s de-
velopment stages: instruction tuning and DPO.
For Instruction Tuning, we used the TIGER-
Lab/WebInstruct-verified dataset (Ma et al., 2025),
which provides high-quality STEM content across
academic levels. Its coverage and reliability made
it ideal for teaching our model to follow educa-
tional instructions effectively.
For DPO, we built a custom dataset combining
STEM-focused pairs from multiple sources:

• A subset of Milestone 1, with one pair per ques-
tion to reduce annotation inconsistencies.

• STEM-related examples from argilla/Capybara-
Preferences, distilled from high-quality reason-
ing datasets including GOAT, Verified-CAMEL,



and TheoremQA ( used only for evaluation).

• argilla/distilabel-math-preference-dpo dataset.

• A STEM-focused subset of the human-annotated
allenai/multipref dataset (Miranda et al., 2025) .

The final dataset was split into train, validation,
and test sets; the first two were used for DPO fine-
tuning, and the test set reserved for evaluation.

2.2 Evaluation method:

MCQA, Quantization, and RAG
For evaluation of our MCQA model we use the

following datasets that show how good our model
performs on different tasks. While the general
STEM Problem Set consists of very broad and di-
verse knowledge in STEM subjects of different
difficulties, the gsm8k is more math, logics and
syntax heavy.

• GSM8k Test Set (Cobbe et al., 2021): Using the
test set provided, we again used the GPT wrapper
to develop our own mcqa test set for GSM8k to
measure our performance on math-related tasks.
Total of 378 rows.

• General STEM Problem Set: We sombined some
MMLU questions, and the arc-easy and arc-
challenge test sets. Total of 3722 rows.

• zechen-nlp/MNLP_STEM_mcqa_evals: A 770
question general STEM dataset provided by
EPFL CS-552 teaching team.

Reward model
We evaluated our reward model with reward accu-
racy on the held-out test split of our custom pref-
erence dataset. Additionally, we also evaluated on
the zechen-nlp/MNLP_dpo_evals dataset as an ex-
ternal benchmark. This allowed us to evaluate how
our model aligned with the course’s expectations.

2.3 Experimental details:

All models were trained on one NVIDIA GPU. Hy-
perparameter details can be found in the Appendix.

2.3.1 MCQA
To train the MCQA model, we employed super-
vised fine-tuning (SFT) using both one-round and
multi-round methods. The one-round method
trained the model on all data simultaneously, while
the multi-round method adopted curriculum train-
ing, progressively increasing difficulty. This in-
volved first training on an ’easy’ set (ai2_arc easy,

short preference pairs, and some GSM8k ques-
tions), followed by a ’medium’ set (MMLU ques-
tions under 302 tokens), and finally a ’challenging’
set (ai2_arc challenge and longer preference pairs).

2.3.2 Quantized Model
4-bit: We load model weights in 4-bit using Nor-
malFloat4 (NF4), a non-uniform quantization that
better preserves performance than uniform meth-
ods like FP4 or int4. We further use double quanti-
zation, to further improve memory efficiency and
mitigate the accuracy drop often associated with
aggressive quantization. For inference, we convert
the weights back to 16 bits.
8-bit: We load model weights in 8-bit using
LLM.int8(), which applies vector-wise quantiza-
tion and keeps high-precision outlier weights. As
explained in the Approach section, the hybrid quan-
tization has no impact on our small model.
QLoRA adapter: We fine-tune a 4-bit quan-
tized model using QLoRA (Dettmers et al., 2023),
adding trainable Low-Rank Adapters on frozen
weights. We target the attention projection layers
and apply a dropout of 0.05. Only LoRA weights
are updated on a subset of the training data of the
base model.

2.3.3 Reward model
We experimented with three loss functions during
DPO training: standard DPO, Robust DPO (with
1e-4 label error probability), and IPO . However,
IPO caused exploding gradients that we were un-
able to resolve, so it was ultimately discarded.

2.3.4 RAG
We used subsets of our datasets specified in Ta-
ble 1 to facilitate comparison with the benchmark,
balance dataset impact, and perform data cleaning
when necessary.

For the distillation, we isolated the questions and
full-text answers from subsets of our four datasets:
SciQ, StemQ, ARC2AI, and the preference pairs.
We then explored various prompts, always includ-
ing both the questions and the answers, until we
found one that produced satisfactory results (see
Appendix). In particular, we experimented with
generating university-level documents based on
college-level MCQA by specifying in the prompt
that the content should be at the master’s level. We
didn’t perform any chunking as we specified in our
prompt to generate concise response. Embedding
model fine-tuning was performed using questions



and answers from the SciQ dataset, applying a pos-
itive pair approach. We used a domain-specific
embedding model pre-trained on medical data, as
it yielded the best performance on our tasks and
medicine is considered a subdomain of STEM.

2.4 Results:
We evaluated our four components against rele-
vant baselines to assess their performance improve-
ments. For MCQA, RAG, an the quantized model
we use Qwen3-0.6B-Base as a primary baseline.
For RAG and the quantized model we also com-
pared against the best-performing full-precision
MCQA model. The reward model is compared
against Qwen3-0.6B, a fine-tuned version of the
base model.

2.4.1 MCQA, Quantized Model and RAG

Model Broad MCQA
Evals

GSM8K
/ GPT

Qwen3-0.6B-Base 0.7507 0.4247 0.4312
echallenge_mcqa 0.7168 0.3800 0.5566
mcqa 0.7507 0.4169 0.5635
4bit quant 0.6932 0.3610 0.5582
4bit quant∗∗ 0.6937 0.3636 0.5635
4bit quant + LoRA 0.6926 0.3597 0.5582
8bit 0.7184 0.3922 0.5688

Qwen3-0.6B-Base RAG 0.7499 0.4299 0.3889
echallenge_mcqa RAG 0.6975 0.3403 0.5423
mcqa RAG 0.7437 0.3896 0.4392

Table 1: Normalized accuracy on selected datasets.
∗∗4-bit without double quantization.echallenge:
curriculum-trained MCQA; mcqa: trained on full data.

Model size Memory
(GB)

Peak Mem.
(GB)

Peak Mem.
Long∗ (GB)

Qwen3-0.6B-Base 2.221 2.249 2.370
8-bit Quantization 0.735 0.820 0.970
4-bit Quantization 0.539 0.523 0.583
4-bit + LoRA 0.548 0.532 0.592
4-bit∗∗ 0.7 0.542 0.602

Table 2: Model size and peak memory usage during
inference. ∗Long prompt = 10× original prompt length.
∗∗4 bit quantization in the same setting but without
double quantizaion.

Table 1 reports accuracy for different datasets on
our different models, while Table 2 details memory
usage for quantized versions. The results show that
8-bit quantization offers strong performance with
significant memory savings, but looking at the grad-
ing formula for quantization (accuracy / average
peak ram), the normal 4 bit quantization offers the

best overall trade-off. In comparison LoRA fine-
tuning and 4 bit model without double quantization
introduces an increase in memory usage without
a clear gain. This justifies our choice of the 4-bit
model as the final system.

Concerning our RAG model it did not show sig-
nificant improvements across most of our evalu-
ation benchmarks, regardless of the base model
used. It only yielded a slight performance gain
in the MCQA evaluation dataset. We provided an
explanation for these results in the analysis section.

2.4.2 Reward model
We evaluated four model variants: DPO, DPO
with curriculum learning (DPO-C), with robust loss
(DPO-R), and with both (DPO-C-R). Their perfor-
mance on our evaluation sets is reported in Table 3.

Model Custom test set MNLP_dpo_evals

Qwen3-0.6B 0.586± 0.013 0.566± 0.022
Dpo 0.693± 0.012 0.784± 0.018
Dpo-C 0.660± 0.013 0.809 ± 0.017
DPO-R 0.694 ± 0.012 0.795± 0.018
Dpo-C-R 0.602± 0.013 0.689± 0.020

Table 3: Reward accuracy for each model on our two
evaluation sets.

As shown in Table 3, all four models outperform
the Qwen3-0.6B baseline.Compared to DPO, cur-
riculum learning (DPO-C) yields the best accuracy
on the MNLP_dpo_evals set but does not improve
performance on the custom test set. Robust loss
(DPO-R) improves results on both and achieves
the highest accuracy on the custom test set. How-
ever, combining both (DPO-C-R) leads to lower
performance across the board. Based on these re-
sults, wselected DPO-R as our final model for its
consistent performance.

3 Analysis

3.1 MCQA and Curriculum Training
Our results show that curriculum training was not
effective for this task. Figure 1 displays the accu-
racy at each stage of training on every test set (re-
sults are from klusertim/MNLP_M3_mcqa_dataset
’broad’ evaluation)

The accuracy is not correlated with our labeling
of easy, medium, and challenging; and our best
results come from training on all the data all at
once. Given that our best outcome was achieved
by training on the full dataset simultaneously, it

https://huggingface.co/Qwen/Qwen3-0.6B-Base
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Figure 1: Curriculum training Accuracy. E_M_Hard is
the model trained first on easy data, then medium, then
hard.

follows that our difficulty labeling may not reflect
the model’s processing challenges, despite our la-
beling following the common standards of large
benchmarks such as ai2_arc and mmlu.

Initially our model achieved reasonable per-
formance on general understanding questions in
STEM but struggled with precision-intensive ques-
tions such as in math questions. To understand
the models capacities, we split our test data into
more "syntax and math"-heavy questions and broad
knowledge questions, along with more math ques-
tions in our training from the gms8k dataset. While
performance on math improved, it still lagged be-
hind broad STEM questions. Increasing math sam-
ples further (around 3000 examples) caused over-
fitting, lowering broad STEM and overall MCQA
scores.

Efforts to enhance performance on broader
knowledge by incorporating MMLU training data
did not yield improvements. We attribute this to
the complexity of the available auxiliary training
data compared to the actual MMLU test questions.

3.1.1 Quantized model
For our quantized models with post training quanti-
zation techniques, we see that the performance is
similar to our best mcqa model on all the topics.
Interestingly, the quantized model is even a little
bit better than our best mcqa model on the math
questions. One explanation might be that our best
model slightly overfits and a reduced version of it
gets better in generalizing.

3.1.2 Different evaluation-suite versions
On the old version of the evaluation framework
lighteval, our best mcqa model outperformed the
base model by over 10% accuracy on our test data,
scoring above 50% on the mcqa evals and gsm8k

and 70% on broad. Inexplicably, that changed
after the lighteval update, despite using the same
single-token continuation task. On the new version,
our best models performance decreased and now
match the base model. This may be due to changes
in the environment, as results remained low even
when running the old Lighteval with the updated
transformers/torch versions.

3.2 RAG Analysis

When testing with extended or shortened version
of the SciQ dataset, we mistakenly attributed poor
performance to input length instead of realizing
that the dataset itself was ill-suited for our eval-
uation. (See Table 9) This led to overfitting to a
small, narrow task, which explains why our RAG
pipeline shows limited gains on broader bench-
marks. Likewise, constructing RAG documents
solely from the SciQ support corpus failed to boost
performance, however adding our three synthetic
training sets produced incremental gains relative to
Qwen3-0.6B-Base as shown in Figure 3.
Data Generation May Outperform Textbook
Content: Having at least obtained convincing re-
sults by generating synthetic data from our MCQA
datasets, we applied the same process to the SciQ
dataset. We compared the carefully selected text-
book passages to a generated version using GPT-4.1
Mini. The generated data outperformed the text-
book data as shown in Figure 4.
Importance of the GPT Model: Given that crowd
workers are expensive, openly available textbooks
are limited, and the process of classifying textbook
passages is quite challenging, it is important to de-
termine the minimum performance and therefore
cost required for generated data to surpass text-
book quality. For our generated datasets based on
StemQ, ARC2-AI, and the preference pairs, we
compared the results using GPT-4o Mini, which
costs half as much as GPT-4.1 Mini (0.15 per mil-
lion tokens), accompanied by the StemQ support
dataset.We observe that while two times cheaper,
the performance remains similar as shown in Fig-
ure 5.

Domain-Specific Embedding Model: We ex-
plored different embedding models : domain-
specific MedEmbed-small-v0.1 performed best.
However, the evaluation dataset we used contained
a large proportion of medical-related questions.
For this reason, we fine-tuned our own embedding
model on the SciQ dataset to make it more versatile.



Results can be found on in Table 10.

3.3 Reward model

The reward model’s training begins with instruc-
tion fine-tuning. Skipping this step led to a sharp
performance drop (0.44 ± 0.01 on our test set,
0.47 ± 0.02 on MNLP_dpo_evals), highlighting
its importance for domain adaptation. The second
training step uses datasets spanning STEM topics
and varying preference difficulty to enhance gener-
alization across domains.

Figure 2: Reward accuracy across dataset sources (left)
and curriculum batches (right) on our custom test set.

As Figure 2 shows, DPO-R performs best on
allenai/multipref and GOAT. This is likely due to
clearer preference contrasts and alignment with
training data. GOAT in particular features clearer
contrasts, such as obvious errors, unlike more sub-
jective judgments based on style or fluency. The
right panel confirms better performance on “easy”
curriculum batches, consistent with expectations.

Metadata from the multipref dataset (further ana-
lyzed in the Appendix A.5) reveals higher accuracy
on clearly defined preferences (e.g., CloseQA) and
lower accuracy for style-based or subjective ones.
Performance also drops in biology and climate sci-
ence, likely due to math-heavy training data and
domain-specific expectations.

3.4 Limitations and reflections

Building a high-quality dataset proved harder than
expected. Limited and homogeneous data hurt gen-
eralization, and memory constraints on Noto forced
us to drop long questions and keep validation small,
likely reducing performance on longer inputs. Mis-
led by early results, we built a very small RAG
system that worked in narrow setups but failed to
generalize—scaling it up would likely have helped.
Finally, working in parallel introduced component
dependencies we didn’t fully account for, and we
overlooked key intermediate results.

4 Ethical considerations

Adapting our Model to Other Languages
To extend our MCQA model to other high-resource
languages (e.g., French), adaptation involves re-
placing the data with well-annotated MCQA
datasets in the target language. Large pre-trained
multilingual models (such as mBERT or Qwen-
multilingual variants) can be used as the base, ben-
efiting from prior exposure to these languages dur-
ing pretraining. For low-resource languages (e.g
Urdu), cross-lingual transfer learning and data aug-
mentation can help overcome limited labeled data.
Beneficiaries : If the model functions as designed,
all educational actors (teachers, students etc.) can
benefit from automated, scalable, and consistent
STEM assistant, improving access to high-quality
practice and feedback.
Potential Harms : Trained solely on English data,
the model may exclude non-English speakers and
reflect Western biases, especially in DPO and RAG
models that embed specific reasoning styles. Ad-
ditionally, if the model makes mistakes, students
might learn incorrect information, which could neg-
atively impact their understanding.
Mitigation Measures : Potential harms can be re-
duced by ensuring transparency and explainability,
so users understand the model’s answers and scor-
ing. Deployment should be limited to validated
contexts with clear documentation of boundaries
(e.g., excluding non-STEM domains). Additionally,
diversifying datasets to better represent underrepre-
sented groups and languages is essential.
Protecting Minority Users Marginalized groups
may face disproportionate harm. To minimize this
risk, it’s essential to include diverse perspectives in
model development and datasets.

5 Conclusion

This project demonstrates that even a compact
0.6B-parameter model with a targeted specializa-
tion pipeline, can effectively support a STEM-
focused AI assistant. With curated data, tailored
loss functions, and domain-specific tuning, promis-
ing performance can be achieved on structured
STEM tasks. However, improvements are mod-
est on broader benchmarks, and RAG-based gains
diminish outside narrow domains— due to English-
only data and memory constraints. Addressing
these constraints through corpus scaling, multilin-
gual data, and broader evaluation will be key to
effective utilization.
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A Full Appendix

A.1 Direct Preference Optimization (DPO)
Losses

The following describes the mathematical formula-
tions and motivations for the three loss functions
we explored for our reward model: Direct Prefer-
ence Optimization (DPO), Robust DPO (rDPO),
and Identity Preference Optimization (IPO). Each
loss function is designed to align model outputs

with human preferences, while addressing different
challenges in preference-based learning.

Direct Preference Optimization (DPO) is a
method for training language models to better align
with human preferences by directly optimizing
a policy based on pairwise preference data. The
DPO objective is:

LDPO = −Ex,yw,yl

[
log σ

(
β
(
ln πθ(yw|x)

πref(yw|x)

)
− β

(
ln πθ(yl|x)

πref(yl|x)

))]
Robust DPO (rDPO) Loss extends the DPO

framework to handle noisy or mislabeled prefer-
ence data. By accounting for the possibility that
some preference labels are flipped, rDPO provides
more robust training and better generalization,
especially in real-world scenarios where data
quality may be imperfect.

LrDPO = 1
1−2ε [(1− ε)LDPO(yw, yl)− εLDPO(yl, yw)]

where ε is the noise rate.
Identity Preference Optimization (IPO) Loss

prevents the model from becoming overconfident
by targeting a specific gap τ in the log-ratio:

LIPO = −Ex,yw,yl

[
log

((
ln πθ(yw|x)

πref(yw|x)

)
−
(
ln πθ(yl|x)

πref(yl|x)

)
− 1

2τ

)2]

A.2 gsm8k-gpt Prompt

Listing 1: Prompt used to generate wrong choices for
GSM8K
chat = Chat.create(f"gsm8k_{idx}",

instruction_prefix="Answer the question
briefly without any further interaction")

q = (
"I have a question with the corresponding

answer for you. "
"I want to do a multiple choice question. The

right choice is "
"the provided answer and you should generate

the wrong choice. "
"Can you please modify the correct answer such

that "
"it's the wrong choice (you can choose to

slightly modify the "
"reasoning but it should stay the same length)

? "
"Don't mention anything about the instruction

in your answer.\n"
f"Question: {question}\nCorrect Answer: {

answer}\n\nWrong answer:"
)
choices = [

chat.ask(q).content,
chat.ask("Can you generate another one?\nWrong

answer:").content,
chat.ask("And a third one?\nWrong answer:").

content
]
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A.3 RAG Datasets

Dataset Type Size

SciQ Textbook 2,647
Larger SciQ Textbook 10,482
Generated SciQ Generated Data 2,647
StemQ Generated Data 667
ai2_arc Generated Data 500
Preference Pairs Generated Data 476

Table 4: Datasets used for the training embedding
model, data generation and RAG documents

A.4 Training Hyperparameters

Hyperparameter MCQA model Reward model
(Instr. tuning / DPO)

Learning rate 10−5 2×10−5/10−6

Number of epochs 3 2 / 3
Batch size 8 2 / 1
Max. sequence length 302 tokens 512
Optimizer AdamW AdamW
FP16 training Enabled Enabled

Table 5: Training configuration for all models

A.5 Analysis of the allenai/multipref
Subset

We further analyze the behavior of our DPO-R
model on preference pairs originating from the
allenai/multipref dataset within our custom
test set. This subset is particularly useful for diag-
nostic purposes, as it includes metadata for each
preference pair such as question type and subject
area.

Type of question Nb of pref pairs Reward acc.

Closed QA 18 1.00
Generation 30 1.00
Open QA 190 0.89
Coding 110 0.88
Brainstorm 16 0.87
Chat 12 0.83

Table 6: Reward accuracy by question type.

Table 6 reports performance across the most rep-
resented question types (10 examples).It shows that
our model performs best on Closed QA and Gener-
ation, which often feature binary correctness (e.g.,
factual correctness or clearly flawed output) or iden-
tifiable errors (e.g., hallucinations or inappropriate
language). Conversely, performance drops on more
subjective formats such as Chat and Brainstorm,
where model preferences may depend on subtle

stylistic or interpersonal cues that are harder to
learn and evaluate consistently.

Subject Nb of pref pairs Reward acc.

Veterinary Medicine 24 1.00
Generation 30 1.00
Physics 42 0.95
Mathematics 52 0.92
Computer Science 186 0.90
Biology 24 0.83
Chemistry 12 0.83
Climate Sciences 28 0.78

Table 7: Reward accuracy by subject.

Table 7 highlights similar trends at the subject
level. The model shows strongest accuracy on
Veterinary Medicine, Physics, and Mathematics,
and weakest performance on Biology, Chemistry,
and Climate Sciences. This pattern may be at-
tributed to differences in domain representation in
the training data—technical and math-heavy con-
tent is likely overrepresented. Moreover, the cri-
teria for alignment in mathematically structured
fields (e.g., logic, correctness) may differ substan-
tially from those in domains like climate science,
where interpretability, relevance to real-world phe-
nomena, or nuanced reasoning play a larger role.

These findings suggest that while DPO-R han-
dles objective or clearly-scoped tasks well, it re-
mains limited when preferences depend on com-
plex, domain-specific judgment or less determinis-
tic criteria.

A.6 Models HuggingFace Repositories

Model HuggingFace Repo

4-bit quant klusertim/MNLP_M3_quantized_model
8-bit quant klusertim/MNLP_M3_quantized_model_8bit
4-bit quant (no double) klusertim/MNLP_M3_quantized_model_4bit_noDouble
4-bit + QLoRA klusertim/MNLP_M3_quantized_model_4bit_adapter

Table 8: Models with their respective HuggingFace
repositories

A.7 Comparison of Document Lengths

Métrique Short SciQ Long SciQ

Topk=5 0.4442 0.4364
Topk=10 0.4364 0.4260
Topk=15 0.4325 0.4338
Topk=20 0.4208 0.4312
Mean 0.4330 0.4320

Table 9: Accuracy with different Topk.

https://huggingface.co/klusertim/MNLP_M3_quantized_model
https://huggingface.co/klusertim/MNLP_M3_quantized_model_8bit
https://huggingface.co/klusertim/MNLP_M3_quantized_model_4bit_noDouble
https://huggingface.co/klusertim/MNLP_M3_quantized_model_4bit_adapter


A.8 Impact of RAG Documents

Figure 3: Mean accuracy for topk ∈ {5, 10, 15, 20}.

A.9 Comparison of Textbook vs Generated
Data

Figure 4: SciQ Textbook vs Generated support accuracy.

A.10 GPT Models Comparison

Figure 5: Mean accuracy across GPT variants.

A.11 Embedding Model Accuracy

Embedding model Mean Accuracy

gte-small 0.442
abhinand/MedEmbed-base-v0.1 0.451
Our embedding Model 0.450

Table 10: Retrieval accuracy (top-k=5, cosine, full
docs).

A.12 Prompt for Data Generation
Task
Write a Master-level, self-contained content that
supplies all the information a reader would need to
deduce the correct answer to the question below.
Do not restate the question or reveal the answer
explicitly.

QUESTION
{q}

CORRECT ANSWER
{a}

Writing guidelines (follow strictly):

1. Length: 200–400 words, single paragraph.

2. Style: concise, high information density, use
field-specific terminology.

3. Depth: include advanced theories, formulas
and explain intermediary steps if necessary.

4. Context: situate the topic within its broader
scholarly framework.

5. Output: plain text only, no headings, lists, or
citations of the source.


