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Abstract

The accurate timing of Copy Number Alterations (CNAs) in tumor evolution is crucial for un-
derstanding cancer progression and optimizing treatment strategies. This study integrates four
distinct algorithms into CINner, a comprehensive cancer simulation model developed by the Irv-
ing Institute of Cancer Dynamics (IICD), to compare their performances across various levels of
analysis. We specifically focus on evaluating and comparing the performance of three timing al-
gorithms: CancerTiming, MutationTimeR, and GRITIC. The algorithms were assessed based on
their ability to predict the occurrence of gains and accurately determine their timing.

Our results demonstrate that GRITIC outperforms the other algorithms in multiple aspects. Above
all it enables a more comprehensive detection of gains, particularly in complex genomic regions and
in the presence of whole-genome duplication (WGD). CancerTiming and MutationTimeR showed
limitations, particularly in handling WGD events and complex gain histories.

Finally, the study explores extending the GRITIC algorithm to single-cell data, which presents
additional challenges due to lower coverage and higher rates of false positives, false negatives, and
unknown reads. By incorporating single-cell sequencing data into our simulations, we propose an
initial step towards addressing these challenges, including a preliminary solution to correct the
primary issue of false negatives in single-cell data.
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Introduction

Cancer develops through a complex interplay of genetic alterations that disrupt normal cellular
functions [1]. Among these alterations, copy number alterations (CNAs)[2] —involving the gain
or loss of genome sections through mechanisms such as missegregation or whole genome duplica-
tion—play a major role in cancer development. CNAs facilitate the adaptation of cancer cells to
various environmental challenges, contributing significantly to tumor progression and heterogene-
ity.

Accurately timing CNAs within cancer cells is crucial for understanding tumor evolution and
progression. Determining the precise timing of these alterations can provide insights into the se-
quence of genetic events that drive cancer development. This knowledge is essential for unraveling
the mechanisms of tumorigenesis and for developing targeted therapeutic strategies.

Advances in sequencing technologies have made it possible to detect single nucleotide variants
(SNVs) across the entire genome using different techniques, including bulk and single-cell sequenc-
ing. These mutations [3] provide a rich source of information that can be leveraged to infer the
timing of CNAs. By analyzing the co-occurrence and relative abundance of these mutations in
relation to CNAs, multiple algorithms have been developed to infer the timing of CNAs based on
bulk data.

At the Irving Institute of Cancer Dynamics, my supervisor recently presented CINner: a frame-
work for modeling chromosomal instability during cancer evolution. This framework allows us to
test existing algorithms on numerous simulated datasets, enabling a more detailed analysis and
evaluation of these algorithms.

Using the CINner framework, our study aims to evaluate and compare various computational
algorithms designed to time CNAs in cancer cells. Our goal is to identify the strengths and
limitations of current approaches and to extend these methods to single-cell data, which present
additional challenges due to data limitations.
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1 CINner and origin of the project

The motivation for this project comes from the release of CINner[4] by the Irving Institute of
Cancer Dynamics (IICD). CINner is an advanced model that simulates tumor development, en-
compassing various aspects of cancer progression, including the emergence of driver genes and copy
number alterations (CNAs). Given that CNAs and single nucleotide variants (SNVs) are the most
common and widespread alterations in cancer genomes, we decided it would be beneficial to add
SNV simulation to CINner. This would allow us to study both CNAs and SNVs together using
the data generated by CINner.

In particular, this project presents a valuable opportunity to evaluate and compare different ap-
proaches proposed in recent years for timing CNAs based on SNV data. By implementing these
algorithms within the CINner framework, we can systematically compare their performance on the
same simulated datasets. This comparative analysis aims to identify the most effective methods
for inferring CNA timing, ultimately contributing to a deeper understanding of cancer genomics.

To adapt CINner for this purpose, our first step in this project was to add the simulation of
passenger mutations into the model. Unlike driver mutations that promote cancer growth, pas-
senger mutations do not directly contribute to tumor progression.

The first version of CINner operates through three key phases:

1. Clone Evolution : In the first phase, CINner simulates the evolution of clones in forward
time. The clones are defined as groups of cells that have identical copy number (CN) and
mutational characteristics (for driver genes). New clones are generated when CNAs and
driver mutations occur, and the clone sizes evolve through time according to the branching
process governing cell division and death.

2. Cell Sampling : In the second phase, CINner samples cells from predefined time points
based on the characteristics of existing clones.

3. Phylogeny Construction : In the third step, CINner constructs the phylogeny of the
sampled cells : a tree representing the evolutionary relationships among clones over time.

To incorporate passenger mutations into CINner, we introduced an additional phase. In this
phase, we start at the origin of the phylogeny tree with no passenger mutations. The algorithm
then goes through the phylogeny tree, adjusting inherited mutations for each branch and elapsed
genotype based on encountered CNAs (doubling mutations for gains or deleting them for losses)
and introducing new mutations according to the mutation rate per cell division.
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Algorithm 1 Simulate Passenger Mutations

1: Initialize passenger mutations as an empty list
2: for each branch in phylogeny do
3: for each elapsed gen in elapsed genotypes do
4: Retrieve mutations from previous genotype

5: Update passenger mutations according to CNAs:
6: if CNA is a gain then
7: Double the affected mutations
8: else if CNA is a loss then
9: Delete the affected mutations
10: end if
11: Add new passenger mutations based on mutation rate
12: end for
13: end for

Finally, the algorithms we used were originally designed for bulk data sets. Bulk sequencing
involves analyzing a mixture of DNA from many cells, providing an average signal of the genomic
alterations present within a tumor. This approach contrasts with single-cell sequencing, which
examines the DNA of individual cells, allowing for the detection of heterogeneity within the tumor.
To adapt our simulations, we added an algorithm to simulate the bulk sequencing process. This
additional layer mimics the pooling of genetic material from multiple cells, mirroring real-world
bulk sequencing conditions. By incorporating this simulation, we can more accurately assess
the performance of our algorithms in a bulk data context, ensuring our results are relevant and
applicable to practical scenarios.

2 Link between CNA timing and SNV

In the context of timing copy number alterations (CNAs), regions with a history of gains are
particularly suited for analysis because they preserve valuable single nucleotide variant (SNV)
information. Unlike regions with losses, where SNVs are lost along with the genomic material,
regions that have only experienced gains retain the original SNV landscape. This retention allows
for a more accurate inference of the timing of CNAs, which is why we restrict ourselves to the case
of regions with a gain-only history.

The timing of a gain can be inferred using SNV data within the gained region. Indeed, muta-
tions that occurred before the gain become duplicated along the chromosomal region, effectively
doubling their multiplicity — representing the number of allelic copies an SNV is present on.
In contrast, mutations that occurred after the gain remain in a single copy with a multiplicity of
1. By analyzing the proportions of mutations with multiplicity one and two (or more), we can
estimate the timing of the gain. This estimated time will be measured in mutation time, which
reflects the accumulation of mutations within a cell.
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Figure 1: Schema of the accumulation of SNV during tumor development

Mutation time preserves chronological order, making it valuable for constructing timelines.
However, it does not directly correlate with real-time due to variations in the mutation rate, which
can fluctuate with genome length, copy number alterations (CNAs) and mutational characteristics
of the cell. Despite these fluctuations, these factors have minimal impact on our analysis, allowing
us to approximate mutation time as linear with respect to real time, which simplifies the comparison
between inferred and actual timing of events.

2.1 Simple cases

To begin with, we can consider four different simple gain histories :

Single gain

Single gains occur when a segment of the genome is duplicated once, resulting in an increase in
copy number from two to three. It typically happens after a missegregation event, when parts
of chromosomes are incorrectly distributed between progeny cells during cell division, leading to
an abnormal copy number.

We consider a region of the genome that has undergone a single gain, meaning there have been
two stages in the tumor’s life: before the gain and after the gain. Our goal is to infer π = (π0, π1),
representing the time (in mutation time) spent in each stage, with particular interest in π0, which
indicates the timing of the gain.

Figure 2: Schema of a single gain leading to copy number state 2+1
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All mutations that occurred in the gained copy before the gain will have a multiplicity of 2
whereas others will have a multiplicity of 1. This results in the following equations :

N1 = R(π0 + 3π1)

N2 = Rπ0

Where N1, N2 represent the number of mutations having multiplicity 1 and 2 respectively, and R
is a constant relative to mutation time.
As π0 + π1 = 1 we can derive

π0 =
3q2

q1 + 2q2

with qi =
Ni

N1+N2
the proportion of mutations having multiplicity i.

For other types of gains, we can have similar equations :

CNLOH

Copy-neutral loss of heterozygosity (CNLOH) occurs when one parental allelic copy is lost and the
remaining copy is duplicated, resulting in two identical copies without a change in overall copy
number.

Figure 3: Schema of CNLOH leading to copy number state 2+0

N1 = 2Rπ1

N2 = Rπ0

so π0 =
2q2

q1+2q2
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Double allelic gain

Double allelic gain occur when both alleles are gained simultaneously, which typically happen
during whole-genome duplication.

Figure 4: Schema of a double allelic gain leading to copy number state 2+2

N1 = 4Rπ1

N2 = 2Rπ0

so π0 =
2q2

q1+2q2

Unbalanced two gains

Unbalanced two gains occur when one allele is gained twice and nothing happens to the other.

Figure 5: Schema of unbalanced two gains leading to copy number state 3+1

N1 = R(π0 + π1 + 4π2)

N2 = Rπ1

N3 = Rπ0

so π0 =
4q3

q1+2q2+3q3
and π1 =

4q2
q1+2q2+3q3

These equations can be written as the general form :

π =
1

cq
× Aq (∗)
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where cq =
∑M

i=1 iqi , A is a matrix reflecting the gain history and q is the vector representing the
multiplicity proportions.

For genomic regions with higher allelic copy numbers, accurately timing the gains becomes more
challenging. Different gain histories can lead to the same copy number state (see example below),
but each gain history corresponds to a distinct set of equations. Due to the lack of information
needed to determine the specific gain history that occurred, we first limit our analysis to the
previously mentioned cases.

Figure 6: Example of two gain histories leading to the same copy number 3+2 state

2.2 Framework to infer the timings

To accurately infer the timing of CNAs, we must make certain assumptions and restrict our anal-
ysis to specific cases. First, we assumed that mutation time is linear with respect to real
time, allowing us to compare the inferred timing π0 to Ttrue time

Tf
. Additionally, for the previous

equations to hold, we assume an infinite genome model, where each position in the genome can
only be mutated once.

As previously mentioned, we restrict our analysis to regions with a gain-only history. For the
initial three algorithms, we further limit our focus to regions that went through a gain history
listed above. The detection of these gains is based on the copy number profile provided for a
sample, which specifies the major (M) and minor (m) copy number for each position.
For a segment of the genome :

• If M=2 and m=1 we consider that this segment has undergone a single gain

• If M=2 and m=0 we consider that this segment has undergone a CNLOH

• If M=2 and m=2 we consider that this segment has undergone a double allelic gain.

• If M=3 and m=1 we consider that this segment has undergone an unbalanced two gains.
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If the copy number profile does not fit these specific cases, the algorithms do not time the
corresponding regions.

Additionally, CNAs and SNVs can be classified based on their state within a tumor. Typically,
a tumor sample has one clonal state and multiple subclonal states. A genomic alteration in a
clonal state is present in all cancer cells within the tumor (having occurred before the most recent
common ancestor (MRCA)). In contrast, a subclonal alteration arises after the MRCA and can
only be found in a subset of cells.
Clonal CNAs, being a part of all tumor cells history, typically accumulate more associated muta-
tions over time. This accumulation provides a richer dataset for timing analysis, which improves
the accuracy and reliability of our conclusions. Therefore, we decided to focus exclusively on timing
clonal CNAs to ensure strong and accurate sequencing of genetic events in tumor evolution.

3 Existing Algorithms

Four algorithms exist for inferring CNA timing based on SNV data: Cancertiming, Mutation-
TimeR, Phylogic NDT and GRITIC. The goal of this project was to implement these algorithms
and adapt them for use with CINner, a comprehensive model that simulates the development of
cancer cells. Integrating these algorithms into CINner will enable us to compare their performance
and determine the most effective one for application to real data.

For all following algorithms we consider a region of the genome that went through S events result-
ing in T = (M+m) copies of the region. According to our restrictions explained earlier, we restrict
ourselves first with S ∈ {1, 2} and T ∈ {2, 3, 4}.
We have :

- π = (π0, ..., πS) the time between each event (in mutation time)
- q = (q1, ..., qT ) the multiplicity proportion over the region of the genome.
- N = the number of mutations on this region

And for the mutation at location i we have :
- Xi = the variant read count
- mi = the total read count
- Ci = the multiplicity of the mutation
- Pi = the Variant Allele Frequency, which represents the proportion of the mutation present

in the cell population.

The goal of these algorithms is to estimate the vector q representing the multiplicity proportion in
order to calculate the vector π which gives the time information based on previous equations (∗).
The purpose of this section is to present the principles of each algorithm.
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3.1 CancerTiming

CancerTiming [5] is an algorithm able to time CNLOH, single gain and double allelic gains by
inferring the multiplicity proportion vector q.

The set of possible variant allele frequency (VAF) of a mutation i is given by Pi ∈ { 1
T
, ..., T

T
}

for a pure tumor sample, and in general cases given by Pi ∈ {a1, ..., aT}. We note for j ∈ {1, ..., T}
qj = P(Pi = aj|Pi > 0).

In this algorithm we model Xi ∼ Binomial(mi, Pi)

The log likelihood of X = (X1, ..., XN) is then given by :

L(X, q) =
N∑
i

log(P(Xi|Xi > 0, q)) =
N∑
i

log

(∑S
j=1 P(Xi|Pi = aj)qj

P(Xi > 0|qj)

)
=

N∑
i

log

(∑S
j=1 P(Xi|Pi = aj)qj

1−
∑

j(1− aj)miqj

)

To maximize this likelihood, CancerTiming uses an Expectation - Maximization (EM) algo-
rithm which consists of repeating a certain amount of time an E-step (Expectation step) and an
M-step (Maximization step).

Here the E-step gives us :

Q(q|q(t)) = EX,q(t) [log(p(X,P |q))] =
∑
j

Yjlog(qj)−
∑
i

log(1−
∑
j

(1− aj)
miqj) + constant

with Yj =
∑

i(P(Pi = aj|Xi, q
(t))

We then need to maximize it on the set of feasible q. The constraints on q are the following
: because it is a probability vector we need to have 1T q = 1 and q ≥ 0 and because of the equation
(∗) we need to have Aq ≥ 0. So the space of feasible q is : Ω = {q : 1T q = 1, q ≥ 0, Aq ≥ 0}.

And the M-step gives us :
q(t+1) = argmaxq∈Ω Q(q|q(t))

This EM - algorithm give us an estimation q̂ that is then used to infer π̂ according to (∗).

3.2 MutationTimeR

MutationTimeR [6]is an algorithm designed to time CNLOH, simple gains and double allelic gains.

In this algorithm, we model Xi ∼ BetaBin(mi, Pi, ρ) with ρ a dispersion parameter (ρ = 0.01).
and the VAF is calculated through Pi =

f0Ci

f0T+2(1−f0)
where f0 is the tumor purity

We note Ci and Si the random variables that represent the unknown multiplicity and state of
the mutation i (clonal or subclonal states).
And we consider our observations Yi as Yi|Xi = Xi if Xi > 3 else absent.
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The goal of the algorithm is to infer the multiplicity and state of each mutation in order to compute
the multiplicity probabilities. To do so, MutationTimeR computes the probabilities P(C|S, Y ).

Using Bayes formula, we have :

P(C, S, Y ) = P(Y |C, S)× P(C|S)× P(S) =
P(X = Y |C, S)× P(C|S)× P(S)

P(X < 3|C, S)

Which can be written as :

P(C, S, Y ) =
P(X = Y |C, S)× P(C|S)× P(S)

Pow(C|S)× Pow(S)

where Pow(C|S) = P(X < 3, C|S) and Pow(S) = P(X < 3|S) are the probability of detect-
ing mutations for a particular multiplicity C for a given state S and for a given state S.
MutationtimeR then computes P(C|S, Y ) through iterations by computing the following probabil-
ities at each iteration :

• P(C|S) is computed as the average of P(C|S, Y ) over all observations Y

• P(C, S, Yi) =
P(Xi=Yi|C,S)×P(C|S)×P(S)

Pow(C|S)×Pow(S)

• P(C, S|Yi) =
P(Yi,C,S)∑

S′,C′ P(Yi,C′,S′)

• P(C, S|Y ) = E[P(C, S|Yi)]

• P(C|S, Y ) = P(C, S|Y )× P(S)

We then use a MAP estimate to assign to each mutation a state and a multiplicity :
c, s = argmaxP(C, S|Y )
Then we can easily compute qC = P(C|S = clonal) and go back to π through the previous equations
(∗).

3.3 PhylogicNDT

In this algorithm [7] we model the likelihood of a mutation i having multiplicity Ci as :
L(Ci) = B(Xi;mi, Pi(Ci)), where B(k;n, p) denotes the binomial distribution’s probability mass
function and Pi =

f0Ci

f0T+2(1−f0)
.

We assume a uniform prior distribution for π in [0, 1] which gives us the prior distribution
of q with the equations described earlier (∗).
For the timing of a single gain for example we then build a posterior probability of the mutation
having multiplicity 2, for each mutation i:

fi(p) = Fi(c1)× p+ (1− p)× Fi(c2)
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where Fi(ck) =
L(ck)

L(c1)+L(c2)

Then the posterior distribution on the overall quantity q2 is :

q2(p) = prior q2 ×
N∏
i=1

fi(p)

Then we can go back to the posterior distribution of π with the previous equations (∗) and take
the inferred timing as the mean.
The same procedure is adapted to time regions with different gain history.

PhylogicNDT introduces a significant improvement over previous algorithms in the treatment of
Whole Genome Duplication (WGD). Indeed, CancerTiming and MutationTimeR, cannot identify
samples as WGD or non-WGD and can only compute double allelic gains for separate genomic
regions. With PhylogicNDT the algorithm first identifies whether the sample has undergone WGD
by examining the most common copy number. If the most common copy number is one, the sam-
ple is identified as non-WGD. If it is greater than two, the sample is identified as WGD. If the
major copy number is two, the algorithm further examines segments with a major copy number of
two. The algorithm times each segment individually and computes the point of maximum overlap,
which is the point that overlaps with the maximum of their confidence intervals. If this point
overlaps with more than 60% of the gains, the sample is identified as WGD.
If the sample is identified as WGD, the algorithm determines the timing of the WGD by jointly
timing a single gain across all segments with a major copy number of two.

3.4 GRITIC

The algorithm GRITIC [8] is based on the same model as PhylogicNDT, but differs in one main
aspect : the timing of gains with complex histories.

As we have seen, regions with higher copy numbers are more challenging to time due to the
uncertainty in their gain history. To address this issue, GRITIC presents a method based on bi-
nary trees. For a given copy number information (major and minor) there are multiple routes
leading to this same copy number. These routes can be represented as binary trees, where each
node represents a CNA event for one allele. Leaf nodes represent the observed alleles, while an-
cestral nodes represent a copy number gain. These nodes are classified based on the type of CNA
(gain or WGD). The edges between two nodes represent the inheritance pattern between time
periods.
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Figure 7: Example of the tree representation associated to one gain history

With a recursive approach, we can generate all possible binary trees leading to a particular
copy number state. We restrict ourselves to the cases with only one WGD event (if the sample
is identified as WGD, 0 if not). We can then use this representation to time complex gains by
associating one equation system to each binary tree representing one route.

Figure 8: Example of binary trees

The relation between the time and the number of mutation with a certain multiplicity is denoted
by the equation :

RAMT = N (1)

where N and T are the vectors encoding SNV multiplicities and time periods, and AM is a binary
matrix.
In our example, we have :

R

0 0 1 1 1 0 1 1
0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0





T1

T2

T3

T4

T5

T6

T7

T8


=

N1

N2

N3


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There are also two constraints that apply to the vector T : First, all paths from root to leaf must
sum to one. Additionally, the WGD is simultaneous, and its timing is predefined equal to TWGD.
These constraints are represented in the following equation :

ACT = C (2)

where AC is a binary matrix and C the vector encoding timing constraints.
In our example, we have :

R



1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0





T1

T2

T3

T4

T5

T6

T7

T8


=



1
1
1
1
1

TWGD

TWGD


We can then use computational methods to find a set T = {T,ACT = C} and then use the equa-
tion (1) to compute the associated multiplicity proportions. Each possible route is now associated
to a set of possible multiplicity proportions. Moreover, it can be shown that the space of possible
multiplicity proportions is often distinct for different routes, which allow us to distinguish routes
using SNV information.

The algorithm then runs as follows :

• Sampling timing : For each possible route, the algorithm samples a set of possible timing
from T and calculates the associated multiplicities proportions.

• Evaluating likelihood : The likelihood of each sample gain is then evaluated by evaluating
the likelihood of the multiplicity proportion vector q :

P (q) ∝
∏
j

∑
i∈Q

qiP (i|m+M,M,Xj,mj)

where Q = {1, ...,M} and P (i|T,M,Xj,mj) ∝ B(Xj;mj, Pj(i)) and B(Xj;mj, Pj(i)) is the
binomial distribution’s mass function and as before Pj(i) is the VAF for mutation j with
multiplicity i : Pj(i) =

f0i
f0T+2(1−f0)

This provides the likelihood for the route’s sample gain.

• Calculating Route Probability : The probability of each route is calculated by taking the
average likelihood of its gain samples and dividing it by the sum of the average likelihoods
for all possible routes.

• Storing Probabilities and Likelihoods : This probability is then stored along with the
likelihood of gain timing for this route and the SNV multiplicities.

Finally, for each segment, the route with the highest probability is chosen, and the timing is
determined as the median of the likelihood distribution.
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4 Results on bulk data

After implementing these four algorithms into CINner, we aimed to compare their performances.
The algorithm PhylogicNDT was not optimized for large-scale analyses and took too long to
compute compared to the others. Since it was based on the same principles as GRITIC, we
decided to focus on three algorithms for further analysis: CancerTiming, MutationTimeR, and
GRITIC. We evaluated their performances through two main aspects: the accuracy in predicting
the occurrence of gains and the accuracy in predicting the timing of these gains.

4.1 Predicting the occurrence of gains

To measure the performance of the algorithms, we used two metrics : recall and precision.
Recall (p1) represents the fraction of actual gains that were correctly predicted. And precision (p2)
represents the fraction of predicted gains that were actual gains .

p1 =
# gains predicted and real

#gains real
and p2 =

# gains predicted and real

#gains predicted

Each gain can be characterized by its location (chromosome), its type (missegregation gain, WGD,
or CNLOH), and, except for WGD, its group. Gains are divided into three groups: the first group
includes gains that are the only gain in a genomic region, the second group includes the first gain
out of multiple gains in a genomic region, and the third group includes subsequent gains (second,
third, etc.) in a genomic region.
We ran 200 simulations where the probability of a WGD event is zero and 200 simulations with
a non-zero probability of having WGD. On these 200 simulations, a little bit more than 125 were
actual WGD samples. These two batch of simulations are analyzed separately, as the presence of
WGD has a significant impact and is treated differently by the various algorithms.

We then plotted histograms for p1 and p2 over the 200 simulations for each algorithm and fil-
ter the results according to chromosome, type, or group. Some of these comparative histograms
can be found in the supplementary data (Figures 1-7)
These histograms reveal distinct differences in performance among the algorithms.

Non-WGD samples:

For simulations with a zero probability of encountering WGD, both MutationTimeR and GRITIC
show robust results for p2. This high p2 suggests a strong confidence in the inferred gains, although
CancerTiming performs slightly worse in this respect. The lower performance of CancerTiming
may be attributed to its inability to identify double allelic gains.

In terms of p1 GRITIC outperforms the other algorithms, which seems logical given its broader
range of gain detection. On average, GRITIC detects more than half of the true gains, while
MutationTimeR detects around 40%, and CancerTiming detects even less, approximately 30%.
The disparity is particularly pronounced for group 3 gains (second CNAs), which is expected as
CancerTiming and MutationTimeR are not designed to detect these gains effectively, as they are
associated to high copy number.
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WGD samples:

For simulations with a non-zero probability of encountering WGD, GRITIC maintains a high
p2 around 1, while both CancerTiming and MutationTimeR show a significant drop in p2 com-
pared to non-WGD simulations. This result is anticipated since these algorithms do not time
segments with too high copy number, which is often the case on WGD samples.

Interestingly, p1 for MutationTimeR seems to improve for WGD samples because the algorithm
considers double allelic gains, which are predominantly present in WGD samples. On the other
hand, CancerTiming exhibits a substantial drop in performance, again due to its failure to account
for double allelic gains, which are critical in WGD samples.

Overall, GRITIC achieves superior results compared to the other algorithms, particularly in terms
of p2. This is especially evident for WGD events, which GRITIC infers accurately as a global
event, unlike the other algorithms.

These results underscore the effectiveness of GRITIC in detecting CNAs across different types
of gain histories, highlighting its advantage in comprehensive and accurate gain detection.

4.2 Predicting the timing of the gains

For the actual gains that are predicted by an algorithm, we can compare and the inferred timing
to real timing. We can first analyze results for one simulation :

(a) (b) (c)

Figure 9: Comparative analysis of the CNA timing for one simulation with CancerTiming (a),
MutationTimeR (b) and GRITIC(c) on non WGD samples

These plots give us multiple information about the performance of the algorithm: it allows us
to compare the deviation between true timing and inferred timing as well as the confidence interval
of the inferred timing and all that depending on the chromosome, the type or the group. These
plots, made for one simulation, already show us that the three algorithms tend to have similar
results concerning the effectiveness of their timing.
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To have a more precise analysis, we have, as before, computed histograms for the standard devia-
tion and the confidence interval length over 200 simulations with a zero probability of WGD and
over 200 simulations with a non-zero probability of WGD. These histograms can also be filtered
by chromosome, group and type. Some of these histograms can be found in the supplementary
data (Figures 8-13).

Our observations seem pretty consistent across non-WGD and WGD samples:

• CI Length Histograms: The CI length histograms exhibit similar profiles across the dif-
ferent algorithms. The mean CI length is approximately 0.13 for CancerTiming, Mutation-
TimeR, and GRITIC, indicating comparable precision in their timing estimates.

• Standard Deviation: The deviation results show that CancerTiming and MutationTimeR
tend to have deviations closer to zero. However, it is important to note that GRITIC
is also timing more complex gains, which may contribute to its slightly higher deviation.
When focusing on simpler gains from group 1, GRITIC’s histogram demonstrates better
performance.

These histograms are not only indicative of the algorithms’ performance but also provide insights
into the types of gains that are most represented and the chromosomes that encounter the most
gains. This information can be leveraged for further detailed analyses.

Overall, while all three algorithms show similar precision in timing gains, GRITIC’s ability to
handle more complex gain scenarios gives it a consistent advantage, particularly in situations
involving more intricate genomic alterations.

5 Results on single cell data

The previous algorithms were designed for bulk data sets, but oncologists are increasingly utilizing
single-cell data in their analyses. Single-cell data provides a more granular view of the tumor’s
heterogeneity by analyzing individual cells, as opposed to averaging signals from numerous cells
in bulk data. Given the superior performance of GRITIC in timing CNAs using SNV data, as
demonstrated in our previous analyses, we sought to assess its effectiveness on single-cell data.
However, this presented several challenges due to the inherent limitations of single-cell sequencing:
the coverage is very low (around 0.05x, i.e. on average 0.05 reads covering a genomic location),
and there are issues with false positives, false negatives, and unknown reads.

To test GRITIC on single-cell data, we needed to simulate single-cell sequencing data sets. When
simulating single-cell data sets, we considered four key parameters:

• Mean coverage: Typically set to 0.05

• False positive rate

• False negative rate

• Unknown rate
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To understand the impact of each parameter on the results, we conducted one simulation on
CINner and simulated the single cell sequencing with a mean coverage of 0.05. Then, we varied
one of the error rates (false positive, false negative, or unknown rate) to 0.1 while keeping the
others at zero. This allowed us to isolate the effect of each parameter.

Figure 10: Results of GRITIC for simulated single cell data with different parameters values.

The figure above revealed that the most significant challenge arises from the false negative rate.
This issue results in missed detections of true mutations, which can substantially affect the accu-
racy of the inferred CNA timings. We then decided to focus on the parameter with the greatest
impact : the false negative rate (µ) and find a way to limit its effect, in order to have satisfying
results with GRITIC on single cell data.

To address the impact of false negatives, we decided to introduce a correction to the mul-
tiplicity likelihood. With bulk data, the likelihood of a mutation i having multiplicity C is
:

P (C|T,M,Xi,mi) ∝ B(Xi;mi, Pi(C))

To account for false negatives, we change the value of this likelihood to :

P (C|T,M,Xi,mi) =
C∑

k=0

B(Xi;mi, Pi(C, k))×B(k;C, µ)

The variable k represents the number of false negatives reads of mutation i. And Pi(C,K) is the

corrected VAF : Pi(C,K) = f0(C−k)
f0T+2(1−f0)

.

We then compared the performance of GRITIC on 200 simulations with and without the cor-
rection:
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Figure 11: Compared Deviation histogram with and without the likelihood correction

The results show that the correction has successfully re-centered the deviation around 0, leading
to improved accuracy. However, the deviation still exhibits significant variability after the correc-
tion, indicating an issue that needs to be addressed in future work. Ultimately, by also accounting
for false positives and unknown reads, this correction can be further refined to incorporate these
additional factors.
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Conclusion

This study successfully demonstrates the enhanced capabilities of the CINner simulation model
in analyzing the timing of Copy Number Alterations (CNAs) by integrating the simulation of single
nucleotide variants (SNVs). Through a comparative analysis of three timing algorithms—CancerTiming,
MutationTimeR and GRITIC—we have shown that GRITIC consistently outperforms the others,
primarily due to its ability to enable a more comprehensive detection of gains, particularly in
complex genomic regions and in the presence of whole-genome duplication (WGD).

The strong performance of GRITIC in detecting and timing CNAs encourages its extension to
single-cell data. However, this extension faces notable challenges, primarily due to the inherent
limitations of single-cell sequencing data, such as low coverage, false positives, false negatives, and
unknown reads. Our study proposes a promising approach to overcome these challenges, focusing
on addressing the issue of false negatives. Nonetheless, further work is needed to improve our
approach and develop comprehensive strategies that also account for false positives and unknown
reads.

In summary, this study has demonstrated the broad applicability of the GRITIC timing algo-
rithm. However, future steps should aim to extend this range even further. Beyond the challenge
of single-cell data, the initial restrictions of our study also present obstacles. One important chal-
lenge to consider could be the timing of subclonal gains. By addressing these issues, we could
enhance our understanding of genomic alterations and cancer evolution.
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Tavaré S. (2024). CINner: modeling and simulation of chromosomal instability in cancer at
single-cell resolution. bioRxiv (Cold Spring Harbor Laboratory).
https://doi.org/10.1101/2024.04.03.587939

5. Purdom E., Ho C., Grasso C. S., Quist M. J., Cho R. J., & Spellman P. (2013). Methods
and challenges in timing chromosomal abnormalities within cancer samples. Bioinformatics,
29 (24), 3113–3120. https://doi.org/10.1093/bioinformatics/btt546

6. Gerstung M., Jolly C., Leshchiner I., Dentro S. C., Gonzalez S., Rosebrock D., Mitchell
T. J., Rubanova Y., Anur P., Yu K., Tarabichi M., Deshwar A., Wintersinger J., Klein-
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Supplementary data

(a) (b) (c)

Figure 1: p1 histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD samples

(a) (b) (c)

Figure 2: p2 histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD samples
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(b)

(c)

Figure 3: p1 histograms filtered by group for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD samples
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Figure 4: p1 histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples

(a) (b) (c)

Figure 5: p2 histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples
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Figure 6: p1 histograms filtered by type for CancerTiming (a), MutationTimeR (b) and GRITIC(c)on WGD samples
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Figure 7: p2 histograms filtered by type for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples



(a) (b) (c)

Figure 8: CI length histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD samples

(a) (b) (c)

Figure 9: CI length histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples



(a) (b) (c)

Figure 10: Deviation histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD samples

(a) (b) (c)

Figure 11: Deviation histograms for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples
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Figure 12: Deviation histograms filtered by group for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on non WGD
samples
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Figure 13: Deviation histograms filtered by group for CancerTiming (a), MutationTimeR (b) and GRITIC(c) on WGD samples
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