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Abstract—Accurate seizure detection from EEG data is critical
for improving the quality of life for individuals with epilepsy.
While traditional approaches often overlook the spatial re-
lationships between electrodes, we investigate a graph-based
framework to better model the structural connectivity of brain
regions. Using a subset of the Temple University Hospital EEG
Seizure Corpus [1], we construct graphs based on the 10–20
electrode layout. We evaluate multiple deep learning models
and preprocessing strategies, including graph construction and
class imbalance handling. Our results show that a Gated Graph
Neural Network (GatedGNN) outperforms alternative models.
An ensemble of the top three configurations further boosts
performance, achieving a Macro-F1 score of 84.8% on the
Kaggle test set provided for the competition [2]. These findings
highlight the effectiveness of geometric deep learning for robust,
interpretable EEG-based seizure detection.

Index Terms—EEG, Seizure Detection, Graph Neural Net-
works, Spatial Modeling, Ensemble Learning

I. INTRODUCTION

Epilepsy is a neurological disorder that affects nearly 50
million people worldwide and is characterized by recurrent
seizures caused by abnormal, excessive neuronal activity in
the brain. Electroencephalography (EEG) is the most widely
used non-invasive tool for monitoring this activity. However,
EEG signals are notoriously challenging to model due to their
high dimensionality, noise, and non-stationary nature.

Traditional approaches often neglect the spatial relation-
ships between EEG electrodes, treating them as independent
channels. In contrast, spatial topology plays a critical role in
seizure propagation. Graph-based modeling enables encoding
of electrode spatial layout, allowing Graph Neural Networks
(GNNs) to learn structured temporal-spatial patterns. The
contributions of our work are listed below:

1) Designed multiple inter-electrode graph configurations,
edge weighting schemes, and signal transformations.

2) Benchmarked various model architectures.
3) Performed hyperparameter tuning on the best model

configuration.
4) Ensembled the top-performing configurations to achieve

higher score.

The remainder of this paper is organized as follows: Sec-
tion II discusses related work. Section III presents our ap-
proach, including graph construction, signal transformations,
model design, and ensemble strategy. Section IV covers our
experiments, results, and analysis. Section V concludes the
paper. Additional materials are provided in the Appendix.

II. RELATED WORK

EEG-based seizure detection has drawn growing interest due
to its important medical application on epilepsy monitoring
and intervention. Early deep learning efforts focused on:

• Temporal models: LSTM networks captured seizure dy-
namics over time [3], but operated on each channel
independently, ignoring spatial context.

• Spatial model: CNNs were then applied to extract local-
ized patterns across electrodes arranged in 2D grids [4],
but their fixed convolutional kernels cannot flexibly mir-
ror the electrodes’ topology.

Graph-based methods address these shortcomings by en-
coding inter-electrode connectivity in a graph and performing
message passing along its edges [5]. Among these, Gated
Graph Neural Networks (GGNNs) [6] advance standard graph
convolution by embedding gated recurrent units at each node.
This design:

1) models long-range dependencies through multi-step mes-
sage updates,

2) controls information flow via gating, preventing noisy
signals from overwhelming the hidden state.

III. METHOD

A. EEG Montage and Graph Construction

To capture the spatial structure of EEG signals, we explored
several graph-based representations, varying node layouts,
edge weighting schemes, and signal preprocessing techniques.

Nodes: Standard 10–20 system provided with the orig-
inal dataset. It is a clinically established electrode placement
scheme that ensures uniform scalp coverage (as shown in
Figure 2).

Edges:
1) Inverse distance: w = 1

d
2) Inverse-squared distance: w = 1

d2

3) Gaussian kernel: w = exp
(
− d2

2σ2

)
Graph Construction: EEG electrodes relationships were

modeled with different approaches:
1) Fully Connected (Baseline): We construct a

fully connected graph using the distances from
distances_3d.csv, with edge weights defined
using Gaussian kernel. This setup includes all pairwise
electrode connections, allowing the model to learn global
relationships across the scalp.



2) k-Nearest Neighbor (k-NN) Graph: We construct a graph
where each electrode is connected to its k nearest neigh-
bors based on 3D distance. This approach emphasizes
local spatial relationships while keeping the graph sparse
enough to reduce potential overfitting.

3) Temporal Emphasis Graph: In this variant, we start from
the same fully connected Gaussian 10–20 graph but boost
edge weights that involve temporal electrodes (T3, T4,
T5, T6) by a factor α. This strategy is biologically
motivated: “Approximately 60 percent of all forms of
epilepsy are focal in origin, with the majority originating
in the temporal lobe” [7]. By amplifying connections to
temporal nodes, the model is pushed to focus more on
these critical regions during seizure detection.
Signal Transformations:

1) Fast Fourier Transform (FFT), which converts time-
domain signals into the frequency domain:

X(f) =
N−1∑
n=0

x(n)e−j2πfn/N

2) Discrete Wavelet Transform (DWT), which captures both
time and frequency information using localized basis
functions:

W [a, b] =

N−1∑
n=0

x[n]ψ∗
a,b[n]

B. Models

Table I lists every architecture we implemented. For clarity,
Figure 1 provides block diagrams of the most complex network
(Generative GNN) and the highest scoring one (Gated GNN).
Finally, we summarize the different model components in the
Table I. Below, models are grouped into sequence baselines,
static-graph baselines, and advanced / dynamic graph models.
Sequence baselines

1) LSTM Classifier: [3] A single-layer LSTM reads each
channel’s time-series and feeds the final hidden state to a
fully-connected (FC) layer, there are no spatial coupling
between electrodes.

2) Transformer Classifier: [8] Treats each electrode as a
token. Per-node features are linearly projected to dmodel,
enriched with positional encodings, processed by a two-
layer Transformer encoder, they are then mean-pooled,
and passed to a FC head.

Static-graph baselines
1) GCN Classifier: [9] The FFT node features flow through

L GCNConv layers with batch-norm and ReLU, they then
go through global mean pooling and a FC layer.

Advanced / dynamic graph models
1) Generative GNN Classifier: [10] Contains the follow-

ing:
(i) Temporal CNN encoder for node features.

(ii) Connectivity generator (three parallel GCNs and
Gumbel-softmax) for a dynamic adjacency matrix.

(iii) Spatial decoder with L attentive graph-conv layers.

(iv) Shallow CNN branch treats the EEG as a N×T image.
(v) Fusion and two-layer MLP classifier.

2) GatedGNN Classifier: [6] Adds a GRU gate after every
graph convolution, i.e. hℓ+1 = GRU(GCNConv(hℓ), hℓ),
which improves long-range credit assignment.

3) GatedGNNPos Classifier: Extends GatedGNN with
sine–cosine positional encodings of node indices [11],
concatenated before the initial projection to endow the
network with an explicit notion of electrode order.

4) GatedGNNAtt Classifier: Includes attention-based aggre-
gation after each convolution. Specifically, node updates
follow hℓ+1 = GRU(AttnAgg(GCNConv(hℓ)), hℓ),
where AttnAgg denotes multi-head self-attention. This
improves the model’s capacity to focus on relevant neigh-
bors in irregular graphs.

TABLE I: Summary of model components. “Temp CNN” =
temporal convolution; “GRU-gate” = gated update; “Dyn. adj.”
= dynamically generated adjacency; “Attn. agg.” = attention-
based neighbor aggregation.

Model Temp CNN GCN GRU-gate Dyn. adj. Attn. agg.
LSTM – – – – –
Transformer – – – – –
GCN – ✓ – – –
Generative GNN ✓ ✓ – ✓ ✓
GatedGNN – ✓ ✓ – –
GatedGNNPos – ✓ ✓ – –
GatedGNNAttention – ✓ ✓ – ✓
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(b) Generative GNN

Fig. 1: Architectural schematics. (a) GatedGNN uses L gated
message-passing layers (GCNConv + GRU) followed by global
pooling. (b) Generative GNN first encodes temporal features, then
learns a dynamic adjacency via a connectivity generator; attentive
graph convolutions and a shallow CNN branch are fused before
classification.

C. Ensemble Learning
We employed ensemble learning [12] by aggregating the

predictions of the top three models from the best-performing



configuration using majority voting, an effective technique
shown to improve robustness and generalization. An odd
number of models (three) was selected to avoid tie cases
and ensure decisive outcomes. In our case, ensemble learning
is implemented as a straightforward majority vote over the
output predictions of the individual models. Further details
on the ensemble setup and its effectiveness are provided in
Section IV-C.

IV. EXPERIMENTS

A. Dataset

We used a pre-defined subset of the Temple University Hos-
pital EEG Seizure Corpus (TUSZ), one of the largest publicly
available EEG seizure datasets. This subset includes recordings
from 50 patients for training and 25 for testing, as provided
by the dataset authors. EEG signals were recorded at 250 Hz
using 19 electrodes placed according to the international 10–20
system, with inter-electrode distances also included, as shown
in Figure 2.

Fig. 2: Standard 10-20 montage for EEG acquisition. Blue
edges represent the graph based on distances between elec-
trodes on the scalp.

The recordings were segmented into non-overlapping 12-
second windows, each labeled as either seizure or non-seizure.
We followed the provided training set and randomly split it
into 80% for training and 20% for validation. The resulting
training set contains 10,394 samples and exhibits a pronounced
class imbalance: 80.6% non-seizure and 19.4% seizure. In
addition to the validation set, we used the 57%-available Kag-
gle test set provided for the competition as a complementary
benchmark to assess the generalization performance of our
models.

B. Data Processing

To address strong class imbalance, we explored oversam-
pling the seizure class as an alternative to weighted cross-
entropy loss. We tested both simple duplication and du-
plication with added Gaussian noise. While noise injection
reduced the gap between training and validation loss, it did not
improve the validation macro-F1 score. We therefore retained
oversampling without noise in the final setup.

Performance differences across the various distance-based
graph constructions and signal transformations were negligible
(within 0.1 macro-F1), leading us to retain the 10–20 electrode

layout, Gaussian edge weighting, and Fast Fourier Transform
for spectral representation.

C. Results

We evaluated all models on the validation set using an 80/20
random split, with a fixed seed (42) to ensure reproducibility.
The results, summarized in Table II, compare the performance
of various models after manual hyperparameter tuning. Macro-
F1 score was used as the primary evaluation metric.

Model Architecture Val Macro-F1
GCN 69.7%
GatedGNN 78.9%
GatedGNNAtt 78.7%
GatedGNNPos 78.5%
GenerativeGNN 72.3%
LSTM 67.9%
Transformer 74.3%

TABLE II: Validation Macro-F1 scores of different model
architectures.

Since GatedGNN yielded the best initial results, we per-
formed a grid search over the following hyperparameter space:

• hidden_channels: 32, 64, 128, 256
• gnn_layers: 3, 4, 5
• dropout: 0.05, 0.10, 0.20

The top three configurations were then retrained on the full
data, and their scores on the test set are reported in Table III.
Finally, we combined the top three configurations using an
ensemble model to enhance robustness of the prediction.

Hidden Channels GNN Layers Dropout Val Macro-F1 Test Macro-F1
256 4 0.10 78.9% 82.2%
128 4 0.10 78.8% 82.1%
128 5 0.20 78.6% 82.1%

Ensemble (Top 3) 80.3% 84.8%

TABLE III: Macro-F1 scores of the top 3 GatedGNN config-
urations and their ensemble

To assess robustness, we ran additional experiments with
different random seeds. Results varied within ±1.5%, confirm-
ing the stability of our approach.

During grid search, we trained each configuration for 500
epochs, as losses typically converged around epoch 400,
allowing us to reduce resource usage. We used a batch size
of 512 across all experiments. For the final training on the
full dataset, we extended training to 1000 epochs to maximize
performance. Figure 3 shows the loss curves and confusion
matrix on the validation set for the best model configuration
(row 1 in Table III).



(a) Training and validation loss
curves

(b) Confusion matrix on the
validation set

Fig. 3: Diagnostics for the best model configuration (Table III),
row 1

Notes. The validation set is here augmented, hence the equal number of
samples in each class.

Since GatedGNN showed the best results, we investigated
the impact of different graph construction strategies on its
performance. Table IV reports the test Macro-F1 scores for
each graph configuration

Graph Configuration Val Macro-F1
Fully Connected 10-20 78.9%
k-NN (k=2) 76.8%
k-NN (k=3) 78.9%
k-NN (k=4) 74.6%
Temporal Emphasis (α = 2) 77.7%

TABLE IV: Validation Macro-F1 scores of different graphs
configurations.

These results show that graph construction strategies (ex-
plained in section III) can influence model performance. Both
the fully connected 10-20 graph and the k-NN (k=3) graph
achieved the highest Macro-F1 score, suggesting that either
fully connected or moderately sparse local graphs can be
effective in capturing EEG dynamics. The k-NN (k=2) and k-
NN (k=4) configurations showed slightly lower performance,
indicating that too few or too many local connections can
reduce model effectiveness. The temporal emphasis configura-
tion (α = 2) is close to the top-performing graphs but did not
surpass them, suggesting that emphasizing temporal regions
might help but doesn’t consistently outperform the default
fully connected graph in this dataset. Overall, these results
suggest that both fully connected and carefully balanced k-
NN graphs can be effective for seizure detection.

D. Discussion

Our results demonstrate that graph-based modeling of EEG
signals using a Gated Graph Neural Network (GatedGNN),
significantly improves seizure detection compared to tradi-
tional approaches, outperforming both static-graph baselines
like GCN (II) and sequential models such as LSTM and
Transformer. Notably, it also outperformed the more complex
GenerativeGNN , highlighting the benefit of controlled mes-
sage propagation over architectural complexity alone. This ap-
proach was further validated by an ensemble of top-performing
GatedGNN configurations (Table III).

Ablation studies on graph constructions showed that alterna-
tive strategies, including k-nearest neighbor settings and time-
weighted edges, did not enhance the model’s performance.
Similarly classical oversampling methods to address class
imbalance performed comparably to more sophisticated aug-
mentation techniques. In particular, duplicating seizure signals
with added Gaussian noise increased the training-validation
loss gap without yielding macro-F1 improvements.

These findings indicate that the main performance gains can
be attributed to the GRU-style gating mechanism.

Despite these promising results, our study has several lim-
itations :

• Evaluation was limited to a single dataset with a fixed
80/20 train-validation split, leaving generalizability to
other EEG datasets and clinical settings uncertain. We
observed this limitation on the final Kaggle competition
test set, where some inconsistencies in scores appeared,
potentially due to differences in patients data and limited
diversity in our data.

• While our model captures spatial relationships between
electrodes, it does not reflect dynamic changes in func-
tional connectivity, especially around seizure onset. Fu-
ture work could explore other signal transforms and
architectures to better capture these dynamic changes.

• Although ensembling enhances robustness, it increases
inference latency and system complexity. This tradeoff
poses challenges for real-time or resource-constrained
deployment scenarios, such as wearable or embedded
medical devices.

Overall, our work demonstrates that integrating gated
message-passing into GNNs is a robust and effective approach
for EEG classification tasks, offering a compelling direction
for future research and clinical applications.

V. CONCLUSION AND FUTURE WORK

In this study, we introduced a graph-based deep learning
framework for EEG seizure detection, showing that a Gated
Graph Neural Network leveraging FFT spectral features and a
10–20 electrode layout outperforms existing approaches. Our
findings underscore the importance of spatial modeling and
gated message-passing mechanisms in effectively capturing
seizure-related patterns within noisy EEG data. Furthermore,
ensemble learning using the top 3 configurations increased
performance, achieving a Macro-F1 score of 84.8% on the
available Kaggle test set.

Future work should focus on validating this approach across
diverse and clinically sourced datasets, incorporating dynamic
graph structures to model temporal changes in brain con-
nectivity, and aligning training objectives more closely with
evaluation metrics such as macro-F1. Additionally, reducing
model complexity for real-time deployment and improving
interpretability will be essential for clinical integration.

Building on these results, our approach offers a strong
foundation for developing reliable, efficient, and clinically
relevant seizure detection systems.
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APPENDIX

A. Hyperparameter Tuning

Hidden Channels GNN Layers Dropout Macro-F1
256 4 0.10 78.9%
128 4 0.10 78.8%
128 5 0.20 78.6%
256 4 0.05 78.6%
128 5 0.10 78.5%
256 3 0.05 78.3%
256 5 0.10 78.3%
128 3 0.10 78.1%
128 3 0.20 78.0%
128 3 0.05 77.8%
128 5 0.05 77.8%
256 5 0.05 77.7%
256 4 0.20 77.7%
256 3 0.10 77.5%
256 5 0.05 77.3%
128 4 0.20 77.2%
64 5 0.10 77.1%
32 4 0.10 76.9%
256 3 0.20 76.8%
64 3 0.10 76.6%
64 3 0.20 76.4%
32 5 0.10 76.5%
256 5 0.20 76.2%
64 4 0.10 76.0%
32 3 0.05 76.0%
64 5 0.05 75.8%
64 5 0.20 75.5%
64 4 0.20 75.4%
32 3 0.10 75.1%
32 5 0.05 74.9%
64 3 0.05 74.9%
128 4 0.10 74.8%
32 4 0.05 74.8%
64 5 0.10 74.7%
32 3 0.20 74.4%
32 4 0.20 74.4%
128 4 0.20 74.4%
256 4 0.20 73.8%
32 5 0.20 73.7%

TABLE V: Validation Macro-F1 scores for all GatedGNN
hyperparameter combinations


